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Enabling Cross-Camera Collaboration for Video
Analytics on Distributed Smart Cameras

Chulhong Min, Juheon Yi, Utku Günay Acer, and Fahim Kawsar

Abstract—Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced,
comprehensive and robust analysis. However, existing visual analytics systems for multi-camera streams are mostly limited to (i)
per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present
Argus, a distributed video analytics system with cross-camera collaboration on smart cameras. We identify multi-camera, multi-target
tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy
identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We
further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i)
dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras,
taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping
camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency
by up to 7.13× and 2.19× (4.86× and 1.60× compared to the state-of-the-art), while achieving comparable tracking quality.

Index Terms—Cross-camera collaboration, Smart cameras, Video analytics

✦

1 INTRODUCTION

It is increasingly common for physical locations to be
surrounded and monitored by multiple cameras with over-
lapping fields of view (hereinafter ’overlapping cameras’),
e.g., intersections, shopping malls, public transport, con-
struction sites and airports, as shown in Figure 1. Such
multiple overlapping cameras offer exciting opportunities
to observe a scene from different angles, enabling enriched,
comprehensive and robust analysis. For example, our anal-
ysis of the CityFlowV2 dataset [4] (5 cameras deployed to
monitor vehicles on the road intersection) shows that each
individual camera separately detects only 3.7 vehicles on
average, while five cameras detect a total of 12.0 vehicles
altogether. Since a target vehicle can be captured by mul-
tiple cameras from different distances and angles, we can
also observe objects of interest with a holistic view. Such
view diversity can make the analytics more enriched and
robust, e.g., a vehicle’s license plate may be occluded in one
camera’s view due to its position or occlusion, but not in the
other cameras.

Most visual analytics systems are deployed in cloud
environments. On the other hand, on-camera video analyt-
ics offer various attractive benefits such as immediate re-
sponse, increased reliability and privacy protection. We
envision that on-board AI accelerators [5], [6], [7] (e.g.,
Nvidia Jetson [8], [9], Google Coral TPU [10] and Analog
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Fig. 1: Places with overlapping cameras: intersection, shop-
ping mall, transport, construction site.

MAX78000 [11]) and embedded AI models [12], [13] will
accelerate this trend. However, the current practice of multi-
camera stream processing is limited to being deployed on
cameras without relying on cloud servers in two ways.
(i) Per-camera processing and aggregation. Previous work has
mostly focused on processing the video analytics pipeline
on each camera individually and aggregating the results
at the final stage [14], [15], [16], thereby suffering from
significant processing redundancy and latency. (ii) Workload-
agnostic centralized processing. Some systems have been pro-
posed to handle enormous multi-video streams, but they
mostly assume that multiple videos are streamed to the
cloud and focus on optimization and coordination of the
serving engine (e.g., GPU scheduling and batch process-
ing [17], [18]).

In this paper, we present Argus, a distributed video
analytics system designed for cross-camera collaboration with
overlapping cameras. Here, the term ‘cross-camera collab-
oration’ not only encompasses the fusion of multi-view
images for video analytics, but also refers to the cooperative
utilization of distributed resources to ensure video analytics
with high accuracy and low latency on distributed smart
cameras, eliminating the need for a cloud server. To this end,
we identify that multi-camera, multi-target tracking serves as
a fundamental task for multi-camera video analytics. This
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TABLE 1: Comparison of cross-camera collaboration approach in Argus with REV [1], Spatula [2], and CrossRoI [3].

REV [1] Spatula [2] CrossRoI [3] Argus (Ours)
Target environment Overlapping cameras Non-overlapping cameras Overlapping cameras Overlapping cameras
Optimization goal On-server computation

costs
Communication and on-
server computation costs

Communication and on-
server computation costs

End-to-end latency on cam-
eras

Collaboration gran-
ularity

Cells (group of cameras) Cameras Areas (RoIs) Objects

Applying associa-
tion

Dynamic (depending on
the target’s existence)

Dynamic (depending on
the target’s existence)

Static (once when the cam-
eras are deployed)

Dynamic (depending on
the target’s location)

Approach Incrementally search cells
that have lowest identifica-
tion confidence

Identify the subset of cam-
eras that capture target ob-
jects

Find the smallest RoI that
contains the target objects

Minimise the # of iden-
tification operations across
cameras

Video processing Centralized Centralized Centralized Distributed

process involves determining the location and capturing
image crops of target objects (presented as query images)
on deployed cameras over time. We find that the computa-
tional bottleneck for camera collaboration arises due to the
frequent execution of identification model inference across
different cameras. To address this challenge, we develop a
fine-grained, object-wise spatio-temporal association tech-
nique. This novel approach strategically avoids redundant
identification tasks on both spatial (across multiple cameras)
and temporal (within each camera over time) axes. This not
only streamlines the process but also enhances the efficiency
of the system.

To enable effective multi-camera, multi-target tracking
across overlapping cameras, we develop an object-wise
association-aware identification technique. Specifically, Ar-
gus continuously tracks records of the association of objects
(their bounding boxes) with the same identity across both
multiple cameras (§4.1) and time (§4.2). Then, it identifies
the object by matching the location association instead of
running the identification model inference and matching the
appearance feature. The concept of spatio-temporal associa-
tion has been proposed in several previous works to reduce
the repetitive appearance or query irrelevant areas [2], [3],
[19]. However, they apply to association at a coarse-grained
level, e.g., groups of cameras [1], cameras [2], [19] or regions
of interest (RoIs) [3]. Thus, the expected gain is small for
our target environment, which is multi-camera, multi-target
tracking on overlapping cameras. For example, the resource
saving from camera-wise association and filtering [2], [19] is
expected to be marginal for densely deployed overlapping
cameras. RoI-wise association and filtering [3] also degrade
tracking accuracy, as the target object is not detected on a
subset of cameras. Please refer to Table 1 and §7 for more
details of these works. In §2.2 and §6.2, we also provide
an in-depth analysis and a comparative study with these
prior arts, respectively. Furthermore, we carefully incorpo-
rate techniques to handle corner cases in the association
process (e.g., newly appearing objects, occasional failure
of the identification model and its error propagation) and
improve the robustness of the spatio/temporal association
process (§4.4).

Next, we develop a set of strategies that perform spatio-
temporal association over distributed smart cameras at
low latency. To maximize the benefits of association-aware
identification, it needs to process cameras one by one in
a sequential manner so that the number of identification
model inferences is minimized; identification model infer-
ence needs to be performed when the identity of the pivot

object is not yet known. This would lead to an increase in
end-to-end latency, even with the fewer number of identifi-
cation model inferences. Also, since cameras have different
workloads (i.e., the number of detected objects) and het-
erogeneous processing capabilities, careless scheduling and
distribution might not maximize the overall performance.
To this end, we develop a multi-camera dynamic inspector
(§5.1) that dynamically orders the camera and bounding
box inspection sequence to avoid identification tasks for
query-irrelevant objects. We also distribute identification
tasks across multiple cameras, taking into account network
transmission and heterogeneous computing capacities on
the fly, to minimize end-to-end latency (§5.2).

We prototype Argus on two Nvidia Jetson de-
vices (AGX [8] and NX [9]) and evaluate its perfor-
mance with three real-world overlapping camera datasets
(CityFlowV2 [4], CAMPUS [20], and MMPTRACK [21]).
The results show that Argus reduces the number of iden-
tification model executions and the end-to-end latency by
up to 7.13× and 2.19× compared to the conventional per-
camera processing pipeline (4.85× and 1.60× compared
to the state-of-the-art spatio-temporal association), while
achieving comparable tracking quality.

We summarize the contribution of this paper as follows.

• We present Argus, a novel system for robust and low-
latency multi-camera video analytics with cross-camera
collaboration on distributed smart cameras.

• To enable efficient cross-camera collaboration, we develop
a novel object-wise spatio-temporal association technique
that exploits the overlap in FoVs of multiple cameras
to optimise redundancy in the multi-camera, multi-target
tracking pipeline.

• We also develop a scheduling technique that dynamically
schedules the inspection sequence and workload distri-
bution across multiple cameras to optimise end-to-end
latency.

• Extensive evaluations over three overlapping camera
datasets show that Argus significantly reduces the num-
ber of identification model executions and end-to-end
latency by up to 7.13× and 2.19× (4.86× and 1.60×
compared to the state-of-the-art [2], [3]) while achieving
comparable tracking quality to baselines.

2 BACKGROUND AND MOTIVATION
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Fig. 2: Typical pipeline for multi-camera, multi-target track-
ing; an example of vehicle tracking without cross-camera
collaboration. Each camera runs the detection and identifi-
cation independently and aggregates the output at the final
stage.

TABLE 2: Identification latency on Jetson devices.
Vehicle (ResNet-101) [25] Person (ResNet-50) [26]

Batch size 1 2 4 1 2 4
NX 0.119s 0.206s 0.399s 0.043s 0.045s 0.066s
AGX 0.065s 0.121s 0.217s 0.018s 0.020s 0.028s

2.1 Multi-Camera, Multi-Target Tracking

In this work, we focus on multi-camera, multi-
tracking using deep learning-based object detection and re-
identification models. These models robustly track objects
across multiple views even in complex scenarios, by lever-
aging the discriminative power of deep neural networks.
They also handle occlusions, changes in appearance, and
other challenges that are difficult to address with geometry-
based methods. To this end, they often learn from large-
scale datasets, enabling them to generalize to a wide range
of scenarios and adapt to changes in the environment.

Operational flow. The key to enabling video analytics on
overlapping cameras is multi-camera, multi-target tracking:
detecting and tracking target objects (given as query images)
from video streams captured by multiple cameras. This is
typically achieved in three stages, as shown in Figure 2.
(i) The object detection stage detects the bounding boxes of
objects in one frame on each camera using object detectors
(e.g., YOLO [22]) or background subtraction techniques [23],
[24]. (ii) The per-camera object identification stage extracts the
appearance features of the detected objects by running the
object identification (ID) model (e.g., [25]) and determines
whether it matches the query image based on feature sim-
ilarity (e.g., L2 distance, cosine similarity). (iii) The result
aggregation stage aggregates the identification results across
multiple cameras and generates tracklets [14] that can be
used for further processing for application logic, e.g., object
counting, license plate extraction and face recognition.

Compute bottleneck: per-object identification. The main
compute bottleneck is the execution of identification tasks,
which need to be performed for all detected objects in
every frame across multiple cameras to determine identity
of objects, as shown in Figure 2. Although we envision smart
cameras equipped with built-in AI accelerators, they are not

Fig. 3: Camera
topology of
CityFlowV2 [4].

Fig. 4: The same vehicle cap-
tured from multiple views in
CityFlowV2 [4].

Fig. 5: Identification sav-
ing opportunity for differ-
ent overlapping ratios in in
CityFlowV2.

Fig. 6: Number of cam-
eras after filtering by Spat-
ula [2] in CityFlowV2 (5
cameras).

yet capable of processing a number of identification tasks in
real time. Table 2 shows the latency of two identification
models (ResNet-101-based vehicle identification [25] and
ResNet-50-based person identification [26]) with different
batch sizes over two Nvidia Jetson devices. It shows that
the number of identification model executions to run on
one camera is quite limited. For example, if 4 vehicles are
detected on every frame on average, even the powerful
Jetson AGX platform can only process about 4 frames per
second. The throughput would drop even further if object
detection is included (we show the detailed results in §6).

2.2 Exploring Optimisation Opportunities
Redundant identification of the same objects. To explore
the opportunities for optimizing the pipeline for multi-
camera, multi-target tracking, we investigate the pattern of
identification tasks with the CityFlowV2 dataset [4]; five
cameras are installed at an intersection as shown in Figure 3.
Figure 5 shows the redundancy probability, i.e., the proba-
bility of objects appearing simultaneously in multiple cam-
eras for different overlap ratios; the overlap ratio is defined
as the ratio of the time the object appears simultaneously
in both cameras and the total time it is detected in any
camera; for a target appearing in n cameras, we calculate
all pairwise overlap ratios (nC2) and take the average. Each
point represents a different query. The results show that,
as the overlap ratio increases, the probability of an object’s
appearance in multiple cameras also becomes higher. This
means that a dense array of cameras with overlapping FoVs
will have more redundant identification tasks for the same
object across multiple cameras.

Spatio-temporal association. To avoid unnecessary and re-
dundant identification tasks, we adopt spatio-temporal asso-
ciation of objects, which have been proposed in the auto-
calibration techniques [27], [28] for multi-view tracking sys-
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Fig. 7: Example of spatial associ-
ation (green lines).

Fig. 8: Example of tem-
poral association (yellow
lines).

tems. Spatial-temporal association refers to the geographical
and temporal association of an object to different cameras.
More specifically, we associate the identity of an object
across multiple cameras by matching their correlated po-
sitions on the frame, rather than matching appearance fea-
tures extracted from the identification model, as shown in
Figure 2. This intuition arises from the observation that,
once installed in a place, cameras’ FoVs are fixed over
time. We explain spatial association with an example. If the
bounding box of two objects (at different times) is located
at the same position in one camera’s FoV, the position of
their bounding boxes in other cameras will also remain the
same.1 Figure 7 shows the spatial association obtained from
the CityFlowV2 dataset [4]. Each row shows a list of images
captured by three cameras (Camera 1, 2, 3) installed as in
Figure 3 at the same time. Each column shows the images
taken by the same camera. The red and blue overlay boxes in
each row represent the bounding box of a red vehicle and a
blue vehicle, respectively. Although two vehicles crossed the
intersection at different times, when two vehicles are located
at a similar location on Camera 1, we can observe that the
corresponding bounding boxes remain in a similar position
on the other cameras. Similarly, as shown in Figure 8, we
expect the temporal association of an object, which means
that an object in a video stream remains in proximity within
successive frames.

2.3 Limitations of Prior Work

Despite such benefits, developing an effective filtering strat-
egy using spatio/temporal association is not straightfor-
ward. There are prior works that explored spatio/temporal
association for filtering out redundant workloads from mul-
tiple video streams. We present their techniques and limita-
tions; we explain their work in more detail in §7.

Auto calibration using spatio/temporal association. Auto-
calibration, also known as self-calibration, has been pro-
posed as a solution to enable multi-view tracking systems

1. Of course, this argument is not always right in theory. Since
a camera projects 3D space onto the 2D plane, the same bounding
box of one camera at different times does not guarantee the same
position of an object. The simplest case would be when two objects
of different sizes are located in the same direction from the camera but
a smaller object is located closer to the camera. However, in practice,
such cases are very rare because the camera is often installed to look
at a 2D plane (e.g., street and floor) obliquely to cover a wide area
and objects of interest (e.g., vehicles and people) cannot be located at
arbitrary 3D positions, as shown in Figure 7. Also, although such a
case happens (e.g., two objects at different positions are captured in the
same bounding box in Camera 1), the spatial association of two objects
is not made because the position and size of the bounding boxes in
other cameras (e.g., Camera 2 and 3) will be different.

from 1990s. This technique aims to automatically estimate
the camera parameters, such as intrinsic and extrinsic pa-
rameters for object tracking in multiple camera views,
without the need for manual intervention or specialized
calibration objects [27]. Auto-calibration methods leverage
the spatio-temporal correlation of objects in multiple views
as described in §2.2, taking advantage of the geometric
constraints imposed by the scene and the motion of objects
or the camera itself [29]. By harnessing these constraints,
auto-calibration techniques can iteratively refine the camera
parameters, leading to improved tracking accuracy and
robustness [30]. Several auto-calibration methods have been
proposed in the literature, including the self-calibration of
space and time technique [28], which exploits the corre-
lation between space and time in the image sequence to
estimate the camera parameters. Other approaches [31], [32]
utilize the epipolar geometry and geometric constraints to
estimate the camera parameters. Additionally, the establish-
ment of a common coordinate frame across multiple views
has been proposed to improve tracking performance [33].
While auto-calibration methods have shown the feasibility
of object tracking from multiple camera views, they still face
several limitations, especially when compared to modern
approaches that utilize deep learning-based object detec-
tion and identification models. Auto-calibration methods
are typically based on geometric constraints, which can
be sensitive to errors in feature detection and correspon-
dence matching, leading to inaccurate camera parameter
estimation. Also, these methods rely on the assumption of
a static scene, which may not hold true in dynamic envi-
ronments where objects and people are constantly moving
and changing [28]. Moreover, these techniques struggle with
real-deployment environments due to computational con-
straints, as the complexity grows with the number of cam-
eras and tracked objects. In this paper, we propose a novel
approach that enables multi-camera, multi-object tracking
on cameras using deep learning-based object detection and
identification models.

Camera-wise filtering in non-overlapping cameras. Spat-
ula [2], [19] leverages cross-camera correlation to identify a
subset of cameras likely to contain the target objects and
filter out unnecessary cameras (that do not contain the
target objects). While it shows a significant performance
benefit in its target environment (widely deployed non-
overlapping cameras), it fails to effectively reduce redundant
identification operations in overlapping cameras. To quantify
its benefit, we analyzed the CityFlowV2 dataset [4]. Fig-
ure 6 shows the average number of cameras out of five
cameras, used by Spatula; the error bar indicates the min-
imum/maximum number of cameras. The results show that
the benefit of Spatula-based camera-wise filtering quickly
diminishes when more queries are used, i.e., fewer cameras
are filtered out. This is because a higher number of objects
are likely to be captured by a higher number of cameras,
simultaneously.

Camera-wise filtering in overlapping cameras. REV [1]
leverages spatial correlation across multiple overlapping
cameras to minimize the number of processed cameras in
identifying the target object. However, its goal is to confirm
the presence of the target object within a given timestamp. As
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(a) Camera #1 (RoI: 6 grids). (b) Camera #2 (RoI: 1 grid).
Fig. 9: Overlapping RoI example between 2 cameras. Cross-
RoI [3] favours Camera #2 which has the smaller RoI size.

such, it cannot be applied for Argus, which not only aims to
confirm the presence of a target object but also extract the image
crops of the target from all cameras that capture it. Specifically,
REV employs an incremental approach, starting its search
from the camera that detects the significant number of
objects 2 and discontinues the search once the target is
identified. Thus, it often misses the image crops from the
remaining cameras, which may have captured the target in
superior quality.

RoI-wise filtering in overlapping cameras. CrossRoI [3]
leverages spatio-temporal correlation to optimize the region
of interest (RoI) of multiple video streams from overlapping
cameras. When multiple objects are captured by a set of
cameras from different views, CrossRoI extracts the smallest
possible total RoI across all cameras in which all target
objects appear at least once, and then reduces processing
and transmission costs by filtering out unmasked RoI areas,
i.e., (a) redundant appearances and (b) areas that do not
contain the target objects; RoI is defined as a 6-by-4 grid.
While it effectively reduces the workload to be processed, it
is not suitable for multi-camera, multi-task tracking. Since it
aims to minimize the RoI size that covers the overlapping
FoVs, the smaller RoI that contains the object is preferred
(e.g., 1 grid in Camera 2 instead of 6 grids in Camera 1
in Figure 9). This would lead to considerable degradation
of the accuracy. Furthermore, since it filters out redundant
appearance in the initial stage, analytics applications cannot
benefit from a holistic view, as shown in Figure 4.

3 ARGUS DESIGN

3.1 Design Goals
Low-latency and high accuracy. We aim at achieving both
low latency and high accuracy in running multi-camera,
multi-target tracking across overlapping cameras, which is
the key requirement of various video analytics apps.

On-device processing on distributed smart cameras:
Streaming videos to a cloud server for processing incurs
significant networking and computing costs as well as pri-
vacy issues. We aim to run the video analytics pipeline
with cross-camera collaboration fully on distributed smart
cameras leveraging on-device resources.

Flexibility of tracking pipeline. We treat the AI models
as a black box, thereby supporting both open-source and
proprietary models and allowing analytics app developers
to select the models for the purpose flexibly.

2. The underlying rationale is that cameras with more bounding
boxes are more likely to capture the target object.

Fig. 10: Argus system architecture.

3.2 Approach
Multi-camera object-wise spatio-temporal association.
Our preliminary study reveals that the computational bot-
tleneck for multi-camera, multi-target tracking in overlap-
ping cameras is the redundant identification of the same
object (§2.1). To achieve both resource-efficient and accurate
tracking, we devise a method for object-wise association-
aware identification. As shown in Figures 7 and 8, Argus
associates the spatio-temporal correlation of objects’ posi-
tions and identifies redundant identification tasks. It reduces
on-camera computational costs by filtering out redundant
identification tasks for the same object across multiple cam-
eras (spatially) and over time (temporally). It also provides
accurate tracking by guaranteeing tracking information on
all cameras.

On-camera distributed processing. To enable on-camera
processing, we further devise two optimization techniques.
First, we optimize on-camera workload by minimizing the
number of model executions (both object detection and
identification). By inspecting cameras and objects (bound-
ing boxes) in order of probability of containing the target
object, Argus avoids model executions that are irrelevant
to the target objects; note that the tracking operation is
finished when all target objects are found. Second, we
further optimize end-to-end latency with parallel execution
on distributed cameras. More specifically, Argus distributes
the identification workload across multiple cameras on the
fly and executes it in parallel.

3.3 System Architecture
Figure 10 shows the system architecture of Argus. It takes
the query images as input from analytics apps and provides
the tracklets (list of cropped images and bounding boxes
of the detected objects) tracked from multiple cameras as
output. Given the targets to track, Argus first starts by run-
ning the object detector to detect objects for identification
on each frame in parallel. Afterwards, the head camera
runs the Dynamic Inspector (Section 5.1) to determine the
processing order of cameras and bounding boxes. Once the
processing order is determined, the Multi-Camera Work-
load Distributor (Section 5.2) schedules the identification
tasks across cameras (head and members), considering the
network transmission latency and heterogeneous compute
capabilities. Given the identification workloads, each cam-
era runs the object identifier; the Spatio-temporal Associator
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Fig. 11: Overview of our cross-camera collaboration-enabled
multi-camera spatio-temporal association. (*): operations are
performed on a subset of cameras.

(Sections 4.1 and 4.2) opportunistically skips the inference
by leveraging the spatio-temporal correlations across cam-
eras.

4 SPATIO-TEMPORAL ASSOCIATION

Operation Overview. The goal of multi-camera spatio-
temporal association is to accurately track the query iden-
tities from multiple cameras with a minimal number of
identification operations, which is the key bottleneck of
the multi-camera, multi-object tracking pipeline. Figure 11
shows the operation of multi-camera spatio-temporal as-
sociation, illustrating how to leverage the association to
achieve efficient multi-camera, multi-target tracking. For
example, if an object matching the query is found in Camera
1 and the expected position of its bounding box in Camera
2 can be obtained, we determine the identity of an object
in Camera 2 if its position matches the expected position. If
no bounding box that corresponds to the one in Camera 1
is expected to exist in other cameras, e.g., in Camera 4, we
skip all identification operations in Camera 4, as this means
that the object is located outside of Camera 4’s FoV.

Formulation. We formalize our problem setting as follows:
• C : a set of cameras, where Ci is ith camera,
• Ft: a set of image frames at time t, where F i

t is an image
frame from Ci at time t.

• EQ: a set of id feature embedding of query images, where
Ej is the feature embedding of jth query

• bboxi
t,j : bounding boxes of the detected on Ci at time t.

Ci has ni
t objects detected at time t (j = 1, 2, ..., ni

t).
Formally, the goal of multi-camera spatio-temporal as-

sociation is to minimize the total number of identification
operations across all cameras,

min
∑
i

ni
IDs, (1)

where ni
IDs is number of identification operations on Ci.

Operational flow. Argus operates as follows in detail. For
simplicity, we explain the procedure for a single query.

1) Camera order determination. We decide the order of
cameras to inspect (§5.1), and repeat below steps for each
camera.

2) Object detection ( 1 in Figure 11): For a frame from i-
th camera Ci, we perform the object detection. We define
its output as {bboxi

t,j , label
i
t,j}, where bboxi

t,j and labelit,j
are a bounding box and a label for j-th object on Ci at
time t, respectively.

3) ID feature extraction ( 2 in Figure 11). For objects with
a detected label that matches the query label, we sort the
bounding boxes for inspection (§5.1). For each cropped
image, we execute the identification model and obtain
the ID features, {Ei

t,j}, where Ei
t,j is the ID appearance

feature from the cropped image (bboxi
t,j). We further

reduce the identification operations within a camera by
leveraging the temporal locality of an object (§4.2).

4) Identity matching ( 3 in Figure 11). For each object, we
compute its similarity to a query image by comparing
their extracted features, EQ, and determine its identity.
Steps 3–4 are repeated until the target object is found.

5) Mapping-based identity matching ( 4 in Figure 11).
We construct a set of bounding boxes of the target object
from previously inspected cameras including the current
camera, Ci, i.e., {entry bboxk

t,j | k ⊂ K}, where K is a
set of cameras that are inspected. Note that it may contain
one or more N/A elements, which show that the object
is located in non-(or partially) FoV of Ci at time t. We
look up the mapping entry that matches {entry bboxk

j }
for the camera set, K . If the entry is found, then we
extract the bounding boxes of other cameras (that are not
inspected yet) in the entry, i.e., {entry bboxi

j | i /∈ K}.
a) If the bounding box in other camera exists in the entry,

e.g., entry bboxi′

t,j , we perform object detection in the
corresponding camera, Ci′ and determine the query
identity by spotting the bounding box that matches
entry bboxi′

t,j .
b) If the entry has N/A in other cameras, e.g., Ci′′ , we skip

all the operations of Ci′′ at time t.
6) If a target object is not found in the frame, we set

entry bboxj
t as N/A and do step 5.

7) Steps 1–6 are repeated until all cameras are inspected.
When multiple queries are given, the output from object

detection 1 and ID feature extractions 2 is shared, but
identification and mapping-based identity matching ( 3
and 4 ) are performed separately. We explain the imple-
mentation details in §4.3.

4.1 Spatial Association
We first explain how we define a spatial association across
multiple cameras. Once an object with the same identity is
captured by multiple cameras, we create a mapping entry
that contains a timestamp and a list of the corresponding
bounding boxes on each camera in C . We use bounding
boxes as location identifiers for fine-grained matching of
the spatial association. Formally, we define a mapping entry
as entryj = {entry bboxi

j}, where entry bboxi
j is a pair

of coordinates referring to the southwestern and north-
eastern corner of the box in Ci at the jth mapping entry.
entry bboxi

j is set to N/A if the object is not found in the
corresponding camera, Ci.
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Utilizing the spatial association. In subsequent time in-
tervals, we apply the identification model to the detected
objects in a single camera (please refer to §5.1 for determin-
ing the order of camera inspection). Upon identifying an
object, we search for a mapping entry matching a bounding
box of the identified object in the same camera. If such an
entry is found, we examine the detected bounding boxes on
the remaining cameras whose entry value is not N/A. If a
bounding box in the remaining camera matches the located
entry, we associate (i.e., reuse) the identification result from
the first camera, avoiding the need to rerun the identifi-
cation model. Note that searching for a matching entry in
the mapping table involves calculating the bounding box
overlap, which is an extremely lightweight operation (e.g.,
takes ¡1 ms for 1,000 matches) as detailed in §4.3.
Management of the spatial association. We use bounding
boxes as location identifiers for fine-grained matching of the
spatial association. To facilitate quick access, we maintain
the entries as a hash table. Also, if the number of entries
exceeds a threshold (e.g., 100), Argus filters out duplicate or
closely located entries by running non-maximum suppres-
sion on the bounding boxes of the entries. Specifically, when
two entries have bounding boxes from the same cameras
with significant overlap, we retain only the entry that has
(i) a higher number of non-N/A values and (ii) a higher
average identity matching score; implementation details are
provided in §4.3. These mapping entries can be obtained
during the offline phase with pre-recorded video clips or
updated during the online phase with runtime results.

4.2 Temporal Association
We leverage temporal association to further reduce the num-
ber of identification operations. It is inspired by the observa-
tion proposed in simple online tracking methods [34], [35],
that the location of an object does not change significantly
within a short period of time. That is, the bounding box of
an object in a video stream would remain in proximity to
the bounding box with the same identity in the previous
frame. For example, even in the vehicle tracking scenario in
CityFlowV2 [4], the distance of a vehicle moving at a speed
of 60 km/h in successive frames of a video stream at 10 Hz
is about 1.7 metres, which is relatively small compared to
the size of the area that a security camera usually covers.

When ID feature extraction is performed, Argus caches
the ID features with their bounding box. Then, when the ID
feature is needed for a new bounding box in a later frame,
Argus finds the matching bounding box in the cache; we ex-
plain the implementation details of bounding box matching
in §4.3. When the matching bounding box is found, Argus
reuses its ID feature and updates the bounding box in the
cache. We set the expiry time to one frame, i.e., the cache
expires in the next frame unless it is updated.

4.3 Implementation of Association Technique
RoI extraction. There are several options for the RoI ex-
traction stage that can be adopted in Argus (e.g., back-
ground subtraction [23], [24] or object detection mod-
els [22]). Although the background subtraction method is
more lightweight, we use the object detection method be-
cause the object detection method can effectively reduce

Fig. 12: Handling newly appearing objects on frame edges.

the number of ROIs to be examined by matching the cor-
responding labels with the object class of the query (e.g.,
vehicles or people). In this paper, we use the YOLOv5n
model, the lightest model in the YOLOv5 family [22] as
it provides reasonable detection accuracy even for small
cropped images in 1080p streams of our datasets. Note
that app developers can flexibly use different RoI detection
methods depending on the processing capacity of smart
cameras and the service requirements.

Identity matching. For identification, it is common to train
the object type-specific identification models (e.g., vehicle
and person) and establish correspondences by measuring
the similarity between the feature vectors of the (cropped)
images (e.g., Euclidean distance or cosine similarity). We
use the dataset-specific identification models and similarity
functions to ensure the accuracy of tracking (details in §6.1).

Bounding box matching. The key to leveraging the spa-
tio/temporal association is to match the bounding box of
a detected object with the other bounding boxes in the
mapping entry and in the previous frame. We use the
intersection-over-union (IoU) to measure the overlap be-
tween two bounding boxes and detect a match if the IoU
value exceeds 0.5 (widely used threshold for object track-
ing [36]). Note that IoU calculation overhead is negligible
(e.g., takes <1 ms even for 1,000 matchings on Jetson AGX
board).

4.4 Improving Robustness

Handling newly appearing objects. One practical issue that
needs to be considered when applying spatial association is
how to deal with objects that appear in the FoV for the first
time. Figure 12 shows an example. At time t (first row),
a target vehicle is found only in Cameras 1 and 3, so the
mapping entry is made as {bbox1

t,j , N/A, bbox3
t,j′}. At time

t + 1 (second row), the target starts to appear in Camera 2.
However, if the target is found in Camera 1 and its mapping
entry matches the one at time t, the target in Camera 2 will
not be inspected. To avoid such a case, we skip mapping-
based identity matching for objects that appear in the frame
for the first time (i.e., we perform an identification task for
a vehicle in the blue box in Camera 2 of the second row
in Figure 12) and match its identity based on identification
feature matching. Note that we apply for the mapping-
based identity matching for other cameras (e.g., Camera 3).

To effectively identify objects when they first appear,
we devise a simple and effective heuristic method. Inspired
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by the observation that an object appears in the camera’s
frame by moving from out-of-FoV to FoV, we consider the
bounding boxes that are newly located at the edge of the
frame as potential candidates, and perform the ID feature
extraction regardless of the matching mapping entry if no
corresponding identification cache is found.

Handling occlusion. Depending on a camera’s FoV, a target
object might be obscured by another moving object. For
instance, in a camera with a FoV perpendicular to the road,
a vehicle in the front lane could occlude a vehicle in the
rear lane. Under such circumstances, the detection model
might fail to identify the target object. To handle errors
resulting from sudden, short-term occlusions, we develop
an interpolation technique that leverages the detection re-
sults from the preceding frame in the same camera and/or
time-synchronised frames from other cameras. Specifically,
during a sudden, short-term occlusion, the target object
might be visible up to a certain point in the frame, then
abruptly disappear mid-frame. If the object remains visible
in other cameras, we can estimate the existence of the oc-
cluded object by comparing the current mapping entry with
past mapping entries. For example, if an object suddenly
disappears in Camera 1, Argus searches for a prior mapping
entry containing the object located in the previous frame of
Camera 1 and extracts the position of the object in other
cameras. If corresponding bounding boxes are found in all
other cameras, Argus performs object detection and identi-
fication on the other cameras. Where occlusion persists for
an extended period, we employ periodic cache refreshing
(details provided subsequently). It is important to note that
such occlusions are rare in practical settings, as objects move
at varying speeds and cameras are often installed to monitor
the target scene from a high vantage point (e.g., mounted on
a traffic light as shown in Figure 12).

Periodic cache refreshing. To avoid error propagation in
our association-based identification (due to occlusion as
well as the failure of identification model inference), we
limit the maximum number of consecutive skips and per-
form identification task regardless of a matching mapping
entry at the predefined interval (e.g., every 2s). This variable
controls the trade-off between efficiency and accuracy.

Time synchronisation. For spatial association, it is impor-
tant for all video streams to be time synchronised. To this
end, Argus periodically synchronises the camera clock time
using the network time protocol (NTP) periodically and
aligns frames based on their timestamp, i.e., two frames
are considered time-synchronised if the difference of their
timestamps is below the threshold (in the current imple-
mentation we set it to 3 ms). Considering that existing CCTV
networks are often connected with a gigabit wired connec-
tion, NTP is capable of achieving this value. Leveraging
the synchronized clocks, we match frames across different
cameras with the smallest timestamp difference to handle
cases where the cameras have different frame rates.

5 ON-CAMERA DISTRIBUTED PROCESSING

5.1 Multi-Camera Dynamic Inspection
The key to maximizing the benefit from spatial association
is to quickly find the objects that match the query, thereby
(a) skipping identification tasks on other cameras from
spatial association and (b) skipping identification of objects
irrelevant to the query even on the same camera. To this
end, we develop a method to dynamically arrange the order
of cameras and bounding boxes to be examined.

Inter-camera dynamic inspection. The inspection order of
the cameras heavily affects the identification efficiency (i.e.,
the total number of required identifications). Specifically, we
find that searching the cameras which most likely contain
the target object first improves the search efficiency. This is
because we can leverage the bounding box location of the
identified target object to aggressively skip identification on
non-matching bounding boxes in the remaining cameras.
For example, consider a case with three cameras (Cameras
1, 2, and 3). At a given timestamp, assume that all cam-
eras detect the same number of vehicles, e.g., four, and a
target object is captured by Cameras 1 and 2. If Camera
1 is inspected first, we can find the query object within
four identification and skip the identification operations for
Cameras 2 and 3. However, if the inspection starts with
Camera 3, we need to perform further inspections with
Camera 1 and 2 just in case the target object is located out of
Camera 3’s FoV. Hence, eight identifications are required.

In addition to efficiency, the inspection order of the
cameras also affects the identification accuracy because our
approach relies on identification-based target matching from
the first camera. Specifically, inspecting the camera where
the target identification accuracy is expected to be the high-
est leads to the highest association accuracy in the remaining
cameras. While the identification accuracy is affected by
multiple attributes of the captured object (e.g., the detected
object’s size, pose, blur), we currently use the bounding box
size as the primary indicator; we plan to extend the analysis
to other attributes in our future work. For example, in the
case of Figure 7, we consider Camera 2 as the first camera
to be inspected as the size of the box of the detected target
object is the largest, i.e., has the highest probability that it is
correctly identified.

Considering these two factors (efficiency and accuracy),
at each time t, we calculate each camera’s priority as follows
(higher value indicates higher priority)

α×
N i

t−1

NQ
+ (1− α)×

Ni
t−1∑
j

c× size(bboxi
t−1,j), (2)

where N i
t−1 is the number of target objects found in Ci at

time t− 1, NQ is the number of queries, size() is a function
that returns the size of the given bounding box, c is a coef-
ficient to normalise the size. α is a variable that determines
the weight of resource efficiency and identification accuracy.

Intra-camera bounding box dynamic inspection. After ob-
ject detection in a frame of a single camera, the order of the
boxes to be inspected also affects the overall identification
performance. Specifically, inspecting the detected bounding
boxes close to the expected location of the target object is
more beneficial, as we can skip the identification on the
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remaining boxes as soon as the target object is identified.
For example, in Camera 1 in Figure 11, it would be beneficial
to start by examining the expected target object (a white
vehicle in the third row) rather than starting from the query-
irrelevant objects. We order the sequence of boxes to be
examined by leveraging temporal association, i.e., sorting

∑
j

min dist(bboxi
t,j , B

i
t−1) (3)

for each bounding box bboxi
t,j in Ci at time t in ascending

order, where Bi
t−1 is a set of bounding boxes of the target

objects detected in Ci at time t−1 and min dist(bbox,B) is
a function that returns the minimum distance from bbox to
any bounding box in B. Note that this only affects the order
of the boxes to be examined, but not the tracking result.

5.2 Multi-Camera Parallel Processing

The key challenge of running spatio/temporal associa-
tion on distributed cameras is the long execution time. The
end-to-end execution time may increase if the target objects
are not found in the previously inspected cameras due to the
sequential execution of the inspection operations. We apply
the following techniques that exploit the resources of the
distributed cameras to prevent this.

1) Given an image, we perform spatial association-
irrelevant tasks on the cameras in parallel, i.e., object
detection and ID feature extraction of newly appeared
objects at the edges of the frame.

2) If the number of objects in a frame exceeds the pre-
defined batch size (e.g., 4), we distribute the identifica-
tion tasks to nearby cameras and execute them in parallel.
Such distribution has a beneficial effect on the end-to-end
execution time because 1) current AI accelerators do not
support parallel execution of AI models [5]3 and 2) the
network latency is relatively much shorter since we need
to send only the cropped image (e.g., 85×141), not the
full-frame image (e.g., 1080p).

Note that batch processing [37] is widely used to re-
duce execution time for multiple inferences on a device. To
maximize the benefits of workload distribution and batch
processing, we profile the execution time with different
batch sizes on each camera and network latency with data
transmission sizes. Then, we dynamically select the optimal
batch size for processing in one camera and the optimal
number of bounding boxes for distribution to other cameras.

Formally, we define this problem as follows. Given the
inspection order determined in §5.1, suppose that we are
currently processing Camera i, where a total of N bounding
boxes were detected. We distribute the identification tasks
across K cameras to minimize the total execution time as:

3. Please note that, while Nvidia offers multi-process service (MPS)
and multi-instance GPU (MIG) software packages to facilitate model
co-running on their GPUS on cloud servers, they are not supported in
the Jetson family devices [8], [9] designed for edge AI. The other AI
accelerators such as Google Coral TPU and Intel NCS 2 also do not
support parallel execution on the accelerator chip.

Fig. 13: Snapshots of CAMPUS-Garden1 [20] dataset.

min
n1,n2,...,nK

max
j

(
TD(Ci, Cj , nj) +BP (Cj , nj)

)
,

where
∑
i

nj = N.
(4)

where nj is the number of bounding boxes to distribute to
Camera j (Cj) to extract the ID features, TD(Ci, Cj , nj)
is a function that returns the network transmission delay
to distribute nj cropped images from Ci to Cj (note that
TD(Ci, Ci, ni) is zero as no transmission is required), and
BP (Cj , nj) is the batched processing latency the identifica-
tion model on Cj . TD(Ci, Cj , nj) and BP (Cj , nj) vary for
each Cj depending on its processing capability and network
bandwidth; we predict TD(Ci, Cj , nj) and BP (Cj , nj) as
follows.

First, transmission delay for the workload distribution
TD(Ci, Cj , nj) is calculated as

TD(Ci, Cj , nj) = H ·W · nj/BW j
i , (5)

where H,W is the height and width of the image crop
(resized to the input size of the identification model) and
BW j

i is the network bandwidth between Ci and Cj (BW i
i

is set as ∞). For each network transmission event between
Ci and Cj , we estimate BW j

i by the transmitted data
size divided by the transmission latency (similar to [38]),
and update it with Exponential Weighted Moving Aver-
age (EWMA) filtering for future prediction. In our current
implementation, the cameras are connected with a Gigabit
wired connection similar to [39], and the distribution latency
is negligible compared to the identification model inference
latency (e.g., ≈0.3 ms to transmit a 128×128 cropped image
over 1 Gbps connection, whereas single identification takes
>100 ms as shown in Table 2).

Next, identification latency with batched processing
BP (Ci, ni) is calculated as

BP (Ci, ni) = ⌈ni/ni
batch⌉ × T (Ci, ni

batch), (6)

where ni
batch is the batch size on Ci, and T (Ci, ni

batch) is the
identification model latency on Ci with batch size ni

batch.
ni
batch is determined at the offline stage by running the

identification model on each Ci with different batch sizes
and determining the one that maximizes the throughput. At
runtime, we update T (Ci, ni

batch) upon each inference using
the EWMA to account for dynamic resource fluctuation
(e.g., due to thermal throttling) similar to [40].

6 EVALUATION

6.1 Experimental Setup
Datasets. We use three real-world overlapping camera
datasets for the evaluation: CityFlowV2 [4], CAMPUS [20],
and MMMPTRACK [21] to ensure a fair comparison with
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baseline methods and to enable an in-depth study of the
impact of various system parameter values. When spatial
association is used, we use the pre-generated mapping
entries learned with 10% of the data in the dataset.
• CityFlowV2 [4] consists of video streams from five het-

erogeneous overlapping cameras at a road intersection.
The cameras are located to cover the intersection from
different sides of the road (Figure 3). 4 videos are recorded
at 1080p@10fps and 1 video is recorded at 720p@10fps
with a fisheye lens. Each video stream is ≈3 minutes long
and the ground truth data contains 95 unique vehicles.

• CAMPUS [20] consists of overlapping video streams
recorded in four different scenes. We use the Garden1
scene, which consists of 4× 1080@30fps videos capturing
a garden and its perimeter (Figure 13). We resized the
images to 720p as they show comparable object detection
performance to the original 1080p at a lower cost. Each
video is ≈100s and the ground truth contains 16 unique
individuals. Since the dataset provides inaccurate ground
truth labels and bounding boxes, we manually regener-
ated the ground truth for three targets (id 0, 2, 9).

• MMPTRACK [21] is composed of overlapping video
streams recorded from 5 different scenes: cafe shop, in-
dustry safety, office, lobby, and retail. In total, there are 23
scene samples (3-8 samples per scene), and each sample
is composed of 4-6 overlapping video streams capturing
6-8 people. Each video stream is 360p@15fps and ≈400
seconds (in total 133k frames = 8,800 seconds). We use
this dataset to evaluate the robustness of Argus in §6.7

Queries. For queries, we randomly chose ten vehicles for
CityFlowV2, three people for CAMPUS, and two people
for MMPTRACK. In the in-depth analysis, we also examine
performance with different numbers of queries.

Object detection and identification models. For object
detection, we use YOLO-v5 [22]. For vehicle identification
in CityFlowV2, we use the ResNet-101-based model [25]
trained on the CityFlowV2-ReID dataset [4]. For person
identification in CAMPUS and MMPTRACK, we trained
the ResNet-50-based model using the dataset. Note that
the performance of the re-id model is not the focus of this
work and different models can be used. All models are
implemented in PyTorch 1.7.1.

Metrics. To measure system resource costs, we evaluate
the end-to-end latency and the number of identification
model inferences. To measure tracking quality, we use two
metrics that are widely used in multi-object tracking [41]:
Multiple Object Tracking Precision (MOTP) and Multiple
Object Tracking Accuracy (MOTA).
• End-to-end latency is the total latency for generating

multi-camera, multi-target tracking results. Note that the
latency includes all the operations required for the sys-
tem, i.e., image acquisition, model inference, uploading
the cropped images to other cameras, and cross-camera
communication time.

• Number of IDs is defined as the total number of identi-
fication model inferences required across all cameras for
each timestamp.

• MOTP quantifies how precisely the tracker estimates
object positions. It is defined as

∑
t,i dt,i∑

t ct
, where ct is the

number of matches in frame t and dt.i is the overlap of
the bounding box (IoU) of target i with the ground truth.
For each frame, we compute the MOTP for each camera
separately and report its average.

• MOTA measures the overall accuracy of both the detector
and the tracker. We define it as 1 −

∑
t(FNt+FPt+MMt)∑

t Tt
,

where t is the frame index and Tt is the number of
target objects in frame t. FN, FP, and MM represent false-
negative, false-positive and miss-match errors, respec-
tively. Similarly, we calculate the average MOTA across
multiple cameras and report their average.

Baselines. We evaluate Argus against the following state-of-
the-art methods. The baselines perform all model operations
on the camera where the corresponding image frame is
generated.
• Conv-Track is the conventional pipeline of multi-camera,

multi-target tracking (e.g., [14]), as shown in Figure 2.
It identifies the query object on each camera separately
and aggregates the identification results across multiple
cameras.

• Spatula-Track adopts the camera-wise filtering approach
proposed in Spatula [2] for object tracking. For each times-
tamp, it first filters out the cameras that do not contain the
target objects and then performs the Conv-Track pipeline
for the selected cameras. We use ground truth labels for
correlation learning and camera filtering, assuming the
ideal operation of Spatula [2].

• CrossRoI-Track adopts the RoI-wise filtering approach
proposed in CrossRoI [3] for tracking. Offline, it learns
the minimum-sized RoI that contains all objects at least
once over deployed cameras. At runtime, it performs the
Conv-Track pipeline only for the masked RoI areas. We
use the ground truth labels for the optimal training of the
RoI mask, assuming the ideal operation of CrossRoI [3].

Hardware. For the hardware of smart cameras, we consid-
ered two platforms, Nvidia Jetson AGX and Jetson NX.
Jetson AGX hosts an 8-core Nvidia Carmel Arm, a 512-
core Nvidia VoltaTM GPU with 64 Tensor Cores and 32
GB of memory. Jetson NX hosts a 6-core Nvidia Carmel
Arm, a Volta GPU with 384 NVIDIA CUDA cores and 48
Tensors, and 8 GB of memory. We prototyped Argus on
these platforms and measured performance; we used Jetson
AGX for the CityFlowV2 dataset and the MMMPTRACK
dataset, and Jetson NX for the CAMPUS dataset. For the
network configurations, we connected the Jetson devices
with a Gigabit wired connection, which is commonly used
for existing CCTV networks. It is important to note that,
while we used the offline data traces from three datasets for
the repetitive and comprehensive analysis, we implemented
the end-to-end, distributed architecture of Argus on top of
multiple Jetson devices and evaluated the resource metrics
by monitoring the resource cost at runtime.

6.2 Overall Performance

Figures 14 and 15 show overall performance on
CityFlowV2 and CAMPUS respectively. In Figures 14a and
15a, the bar chart represents the average end-to-end latency
(Detect: object detection latency, ID: identification latency)
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(a) Resource cost. (b) Tracking quality.

Fig. 14: Overall performance on CityFlowV2.

(a) Resource cost. (b) Tracking quality.

Fig. 15: Overall performance on CAMPUS.

and the line chart shows the average number of IDs. In
Figures 14b and 15b, the bar and line charts represent the
average MOTA and MOTP respectively.

6.2.1 Resource Efficiency

Overall, Argus achieves significant resource savings by
adopting the spatio-temporal association and workload dis-
tribution, while not compromising the tracking quality. We
first examine the resource saving of Argus. In CityFlowV2
where five cameras are involved, Figure 14a shows that
the average number of IDs decreases from 42.6 (Conv-
Track ) to 21.1 (Spatula-Track), 30.1 (CrossRoI-Track) and
11.6 (Argus). The end-to-end latency also decreases from
740 ms to 650 ms, 660 ms and 410 ms, respectively; Argus
is 1.8×, 1.59× and 1.61× faster than Conv-Track, Spatula-
Track and CrossRoI-Track, respectively, which are the state-
of-the-art multi-camera tracking solutions. We find several
interesting observations. First, the latency does not decrease
proportionally to the number of IDs because all baselines
need to commonly perform object detection in every frame.
However, even when object detection is taken into account,
Argus significantly decreases the end-to-end latency by
49% by reducing the number of IDs by 73%, compared to
Conv-Track. Second, both Spatula-Track and CrossRoI-track
significantly reduce the number of IDs by selectively using
cameras and RoI areas, respectively. However, the reduction
in end-to-end latency is not significant (about 10%). This is
because the latency is tied to the longest execution time of all
cameras due to the lack of distributed processing capability.

Figure 15a compares the resource costs for the CAM-
PUS dataset. The results show a similar pattern to the
CityFlowV2 dataset, but the saving ratio of Argus is much
higher. Argus reduces the average number of IDs by 7.13×
(35.8 to 5.0) compared to Conv-Track and Spatula-Track and
4.86× (24.4 to 5.0) compared to CrossRoI-Track. The end-
to-end latency also decreases by 1.72× (from 310 ms to
180 ms) and 1.43× (from 258 ms to 180 ms), respectively.
The larger saving is mainly because the moving speed of
the target objects (here, people in the CAMPUS dataset)
is relatively slow, compared to vehicles in the CityFlowV2
dataset. Therefore, there are fewer newly appearing objects
(at the edge) and most of the identification tasks can be done
by spatial and temporal association matching. Interestingly,
Spatula-Track shows the same performance as Conv-Track,
which is different from the CityFlowV2 case. This is because
all target people are captured by all four cameras all the
time and thus cameras are not filtered out. CrossRoI-Track
reduces both latency and the number of IDs compared to
Conv-Track, but its efficiency is still lower than Argus; for

CrossRoI-Track, the number of IDs and latency are 24.9 and
419 ms, respectively.

6.2.2 Tracking Quality
We investigate how spatial and temporal association-aware
identification affects tracking quality. Figure 14b and Fig-
ure 15b show the MOTP and MOTA on CityFlowV2 and
CAMPUS, respectively. Overall, Argus achieves comparable
tracking quality, even with significant resource savings.
Interestingly, in CityFlowV2, Argus increases both MOTA
and MOTP compared to Conv-Track; MOTA increases from
0.88 to 0.91 and MOTP increases from 0.60 to 0.67. This
is because several small cropped vehicles are identified by
associating with their position from other cameras, which
failed to be identified by matching their appearance features
from the identification model in the baselines. In CAMPUS,
Argus shows almost the same tracking quality as Conv-
Track, but MOTA drops slightly from 0.85 (Conv-Track) to
0.82. There were some cases where a target person was
suddenly occluded by another person in some cameras.
However, Argus identifies the occluded person in the next
frame using the robustness techniques §4.4, thereby being
able to minimize the error.

We investigate the benefit of cross-camera collaboration
in more detail. In CAMPUS, Spatula also increases the
tracking accuracy (MOTA) compared to Conv-Track by fil-
tering out query-irrelevant cameras, thereby avoiding false-
positive identifications. However, in CAMPUS, its quality
is identical to Conv-Track as no cameras are filtered out.
Unlike Spatula-Track, CrossRoI degrades the tracking qual-
ity on both MOTA and MOTP; for example, in CAMPUS,
CrossRoI shows 0.55 of MOTA, while other baselines includ-
ing Argus show 0.85 of MOTA. This is because, for object
detection and identification, CrossRoI uses the smallest RoI
across all cameras in which the target objects appear at least
once. Therefore, these tasks sometimes fail due to the small
size of the objects in the generated RoI areas.

6.3 Performance Breakdown: Benefit of On-Camera
Distributed Processing

We developed two variants of Argus, namely Spatial and
Spa-Temp, in which we apply each enhancement to Conv-
Track in turn. For identification optimization, Spatial uses
spatial association and Spa-Temp uses the spatio/temporal
association. Both of them have the capability of dynamic
inspection of cameras and bounding boxes (§5.1), but do
not have distributed processing (§5.2).

Figure 16a shows the resource cost in CityFlowV2. The
spatial association reduces the number of IDs from 40.5
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(a) Resource cost. (b) Tracking quality.

Fig. 16: Performance breakdown on CityFlowV2.

(a) MOTP. (b) MOTA.

Fig. 17: Impact of the number of queries on tracking
quality (CityFlowV2).

(a) Number of IDs. (b) End-to-end latency.

Fig. 18: Impact of the number of queries on resource
cost (CityFlowV2).

(Conv-Track) to 16.5 (Spatial) and the temporal association
further decreases to 11.6 (Spa-Temp). These results show
that our spatial and temporal association techniques make
a significant contribution to overall resource savings. In-
terestingly, despite the reduction in the number of IDs by
Spatial, the latency increases from 854 ms (Conv-Track) to
992 ms (Spatial) due to the sequential operations on the
cameras. However, we observe that the temporal association
and workload distribution successfully reduce the latency in
turn, to 624 ms and 317 ms, respectively. Figure 16b shows
the tracking quality of CityFlowV2. It confirms again that
both spatial and temporal associations (and their mapping-
based identity matching) do not compromise the tracking
quality. We omit the result of CAMPUS as we also observe
a similar trend.

6.4 Impact of Number of Queries

We investigate the impact of the number of queries on
system performance. For CityFlowV2, we vary the num-
ber of queries from 5 to 95 with an interval of 5. For
each number of queries, we randomly select three sets
of queries (except the entire set) and report their average
performance. Figures 17a and 17b show MOTP and MOTA
for CityFlowV2, respectively; we observe a similar trend in

CAMPUS. For Conv-Track, both the MOTP and MOTA are
not significantly affected by the number of queries. This is
because Conv-Track runs the identification model on all the
detected objects across all cameras regardless of the number
of queries; the identification matching accuracy with the
query images does not vary with the number of queries as
they are randomly selected and averaged. Argus also shows
comparable accuracy with Conv-Track (with significantly
reduced number of ID operations as shown in Figure 18,
showing that it effectively reduces the identification work-
load without accuracy drop. Even with a large number of
matching attempts with other cameras and queries, Argus
identifies the objects accurately.

Figure 18 shows how the number of IDs and the end-
to-end latency change depending on the number of queries.
The number of IDs and the latency in Conv-Track do not
change because all objects in the frame must be examined
regardless of the number of queries. In contrast to Conv-
Track, Figure 18a shows that the number of IDs in Argus in-
creases with the number of queries. This is because, at each
time, if all target objects are not found on the previously
inspected cameras, Argus has to perform the identification
operation for all detected objects (which are not filtered
out of the spatio/temporal association). This probability
increases when the number of queries is large, thereby
increasing the number of IDs. However, it saturates when
the number of queries is around 50 and, more importantly,
it is still much lower than Conv-Track.

Figure 18b also shows an interesting result. While the
number of IDs of Argus increases by 29% from 10.6 to 13.7
when the number of queries is 5 and 95, respectively, the
increase in latency is much lower, i.e., by 8% from 399 ms
to 433 ms. If we exclude the latency for object detection for
the analysis, the execution time for identification increases
by only 10%, from 315 ms to 349 ms. This result shows
the benefit of the Argus’s distribution of the identification
operations to other cameras.

6.5 Impact of Number of Cameras

We examine the impact of the number of cameras on re-
source saving. We consider all possible combinations and
report their average performance; for example, in the case
of three cameras in the CityFlowV2, we report the average
result for all 10 (=5C3) combinations. In this subsection, we
do not report the tracking quality results because it is not
fair to compare tracking quality for different number and
topology of cameras.

Figure 19 shows the total number of IDs for Conv-Track
and Argus. As expected, the number of IDs required for
both Conv-Track and Argus increases when more cameras
are used. As shown in Figure 19a, in Conv-Track the number
of IDs increases from 8.2 (1 camera) to 42.5 (5 cameras) in
CityFlowV2, i.e., by 418%. Similarly, in Argus, it increases
from 2.2 to 11.6, i.e., by 423%. Figure 19b also shows that in
CAMPUS, the total number of IDs increases by 316%, from
8.6 (1 camera) to 35.8 (4 cameras) in Conv-Track, while in
Argus, it increases from 1.6 to 5.0, i.e., by 213%. However,
interestingly, Argus shows a much lower standard deviation
across different combinations. This is because the number of
IDs in Conv-Track is proportional to the number of objects
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(a) CityFlowV2. (b) CAMPUS.

Fig. 19: Impact of number of cameras on number of IDs.

(a) CityFlowV2. (b) CAMPUS.

Fig. 20: Impact of the number of cameras on latency;
purple line is the execution time of the object detection.

in a frame and is therefore affected by the camera’s FoV,
i.e., how many objects are captured. In contrast, the number
of IDs in Argus is determined by the spatial association of
the target objects, and is therefore more dependent on the
number of queries.

We further investigate the impact of the number of
cameras on end-to-end latency. Figure 20a and 20b show
the latency in the CityFlowV2 and CAMPUS datasets, re-
spectively. While Conv-Track performs the identification op-
erations on each camera individually, the latency increases
as the number of cameras increases. This is because Conv-
Track’s latency is tied to the maximum latency across all
cameras. Argus also increases latency for both CityFlowV2
and CAMPUS when more cameras are involved, as the
waiting time for the entry matching of previously inspected
cameras also increases. Nevertheless, the latency of Argus
in both Figures 20a and 20b is still much lower than
that of Conv-Track. We observe an interesting case in the
CityFlowV2 dataset. The latency of Argus decreases from
587 ms to 400 ms when the number of cameras increases
from 4 to 5, even though the number of IDs increases from
8.6 to 11.6. We conjecture that more cameras provide more
opportunities for the parallel processing of IDs across dis-
tributed cameras, and the benefit becomes apparent when
all five cameras are involved.

6.6 Impact of Inspection Order

We investigate the impact of the inspection order on system
performance. For the study, we developed three variants of
Argus, namely Static, Reverse, and Crowded-first. All of them
are built upon the original Argus system. The Static and
Reverse variants inspect the cameras and bounding boxes in

(a) CityFlowV2. (b) CAMPUS.

Fig. 21: Impact of inspection order.

a predefined static order and in the reverse order of Argus,
respectively; Reverse is used to establish the performance
lower bound and validate our design choice. The Crowded-
first variant, inspired by REV [1], inspects the cameras
in a descending order based on the number of bounding
boxes. The underlying rationale is that cameras with more
bounding boxes are more likely to capture objects of interest.
For the bounding box inspection order, we employed the
same order as used in Static.

Figures 21a and 21b show the latency and the total
number of IDs in CityFlowV2 and CAMPUS, respectively.
We omit the result of MOTP and MOTA as the differences
were marginal. The results validate our design choice. In
both datasets, Argus shows shorter latency and fewer iden-
tification operations. As expected, Static and Crowded-first
show better performance than Reverse, though their effect
is still lower than Argus. This is primarily due to a lack
of considerations for the relevance of target objects in a
scene. This advantage is more evident in CAMPUS. The
number of IDs of Reverse is 11.6, while Argus’s number
is 5.0. Similarly, the latency decreases from 245 ms to 186
ms. This is mainly because the target people mostly remain
in one of the cameras during the video stream. Therefore,
Argus is capable of reducing the number of IDs by initiating
the inspection with potential target objects.

6.7 Robustness on Large Scale Benchmark

We perform large-scale evaluation on the MMPTRACK
dataset to validate the robustness of Argus. Figure 22
compares the resource cost and tracking quality results of
Conv-Track and Argus; we omit the results of Spatula-Track
and CrossRoI-Track as we observe the similar performance
trend in the previous experiments in Figures 14 and 15.
First, Figure 22a shows that Argus achieves 2.19× latency
gain, which mainly comes from reducing the number of
IDs from 28.47 (4-8 objects×4-6 cameras) to 5.79. Next,
Figure 22b shows the tracking quality of Conv-Track and
Argus. The base accuracy of Conv-Track varies across scenes
depending on ground truth labeling granularity and detec-
tor performance (e.g., retail scenes contain a lot of occlusions
resulting in detection failure, whereas the ground truth label
is provided for all objects regardless of occlusion). Argus
consistently shows marginal accuracy drop compared to
Conv-Track, showing the robustness of our spatio-temporal
association technique.
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(a) Resource cost. (b) Tracking quality.

Fig. 22: Overall performance on MMPTRACK.

Fig. 23: Snapshots of real-world case study.

TABLE 3: Performance of Argus in the real-world case study.

Resource Efficiency Tracking Quality
Latency Number of IDs MOTP MOTA

Parking lot 0.21s 3.2 0.71 0.95

6.8 Real-world Case Study & System Overhead
We conducted a supplementary experiment to investigate
both the performance and the operational characteristics
of Argus’s runtime system within a practical deployment
scenario. To achieve this objective, we installed four cam-
eras and four Jetson AGX boards within a parking lot of
the institute under the consent, employing them to record
videos at a resolution of 1080p with a frame rate of 10 frames
per second. The parking lot selected for this study spans
an approximate area of 50 metres by 25 metres. To ensure
a comprehensive coverage, the cameras were positioned
at the corners of the parking lot at a height of 3 metres;
the corresponding AGX board is connected to the camera
via the Ethernet cable and put on the ground. Figure 23
shows the snapshots of four cameras. Each video stream has
an approximate duration of an hour and the ground truth
data contains 60 vehicles in total. Since the target objects
are vehicles, we used the same object detection model and
identification model used in the CityFlowV2 dataset.

Table 3 shows the Argus’s overall performance in the
real-world case study. It is important to emphasize that we
did not conduct a comparative study due to the inability
to guarantee consistent behaviours across repetitive exper-
iments in real-world deployment. Moreover, a thorough
analysis, compared with baseline methods, has already
been reported in preceding subsection. When contrasting
the results obtained from the parking lot experiment with
the CityFlowV2 dataset, it is interesting to note that the
parking lot exhibited marginally superior performance in
the aspects both of resource efficiency and tracking quality;
we did not compare with the CAMPUS dataset due to the
discrepancy in target objects and their respective charac-
teristics. For instance, the average number of identification
tasks within the parking lot is 3.2, while the CityFlowV2
dataset showed a higher figure of 10.7. This difference

TABLE 4: Component-wise microbenchmark.

Device Detection (YOLOv5n [22]) Identification (batch size 4)
1920× 1080 1280× 720 ResNet 101 [25] ResNet 50 [26]

NX 0.359s 0.073s 0.399s 0.063s
AGX 0.084s 0.038s 0.217s 0.027s

is interesting, especially given that the average number
of vehicles captured per video frame in the parking lot
exceeded the count of vehicles in the CityFlowV2 dataset.
We conjecture this is primarily due to the largely stationary
nature of vehicles in the parking lot, allowing the benefit of
our spatio-temporal association to be maximized. Similarly,
the tracking quality in the parking lot is higher than that in
the CityFlowV2 dataset. The MOTP values in the parking lot
and the CityFlowV2 dataset were 0.71 and 0.63, respectively.
We attribute this to the relatively shorter distance between
the camera and the vehicles in the parking lot, enabling the
capture of vehicles at a larger scale.

We delve deeper into the system overhead of Argus
with this deployment setup. Aside from object detection
and identification, the principal operations of the Argus
system encompass two elements: (1) mapping-entry match-
ing and (2) workload distribution decision-making. How-
ever, according to our measurements derived from the
real-world case study, the overhead associated with both
these operations is negligible, quantified as less than a few
milliseconds. This minimal overhead can be attributed to
our efficient management of mapping entries via a hash
table for the first operation. Additionally, for the second
operation, the system only needs to consider a relatively
small number of cases—typically fewer than five identifica-
tion operations—when making distribution decisions. This
streamlined approach contributes to the overall efficiency
and effectiveness of the Argus system.

6.9 Micro-benchmark

We perform a micro-benchmark to better understand
the resource characteristics of model inference on smart
cameras. Table 4 shows the latency of vision models we
used on Jetson NX and AGX; we report the detection latency
at different image sizes. While the processing capability
of smart cameras is still limited compared to the cloud
environment, performance can be optimized by applying
the right configurations depending on the requirement, e.g.,
720p images with people tracking on Jetson NX. We also
showed that Argus can further optimize the latency (and
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corresponding throughput) by leveraging the spatial and
temporal association.

7 RELATED WORK

7.1 Cross-Camera Collaboration

7.1.1 Multi-view Tracking using Camera Geometry
Camera geometry, also referred to as the geometry of
multiple views, has been studied for multiple decades to
enable accurate tracking of objects from different camera
views. It deals with the mathematical relationships between
3D world points and their 2D projections onto the image
plane [27]. By understanding these relationships, the 3D
structure of a scene, object, or person has been able to be
recovered from multiple 2D views, which enables the track-
ing of objects even when they move out of one camera’s FoV
and into another [42]. Camera geometry has been applied in
various fields, such as robotics, computer vision, and motion
capture, where the use of multiple synchronized cameras
with overlapping FoVs can improve the tracking accuracy
and robustness of the system [43].

The foundation of multi-view tracking is the estimation
of the fundamental matrix, which encodes the geometric
relationship between the views of two cameras [27]. This
matrix can be used to compute the epipolar geometry, which
describes the relationship between corresponding points in
the two images and can be utili‘ed to find the corresponding
point in the other view when a point is detected in one
view [42]. By using the fundamental matrix, triangulation
techniques can be employed to estimate the 3D position of
the tracked object in the scene [27]. Also, bundle adjustment,
a non-linear optimisation technique, has been used to refine
camera parameters and 3D structure of the scene, leading to
a more accurate estimation of the object’s position [44].

Despite the advantages of camera geometry in enabling
tracking from multi-camera views, there are several lim-
itations in its deployment. One major challenge is the
sensitivity to camera calibration errors, which can lead to
inaccurate 3D reconstruction and subsequently impact the
tracking performance [27]. The calibration process requires
the precise estimation of intrinsic camera parameters, such
as focal length and lens distortion, and extrinsic parameters,
like camera pose and orientation, which can be difficult to
obtain in practical applications [42]. When using cameras
with pan-tilt-zoom (PTZ) capabilities, the camera geometry
needs to be recalculated each time the camera view changes,
adding to the complexity and computational load of the
tracking process. Similarly, the process of calibration should
be also repeated each time there are changes in the camera
set and topology, such as the addition of a new camera,
failure of an existing camera, or the change of a camera’s
position in a retail store. While Argus also needs to adapt
to these dynamics, it can be done more easily simply by
adjusting or regenerating the spatio/temporal association.
Moreover, in multi-view tracking using camera geometry,
occlusions and ambiguities in object appearances can pose
significant challenges in identifying corresponding points
across different views, leading to erroneous tracking [43].

Significantly, calibration may be impossible if video ana-
lytics are detached from camera providers. Current video
analytics are restricted in leveraging the potential of de-
ployed cameras due to hard-coded analytics capabilities
from tightly coupled hardware and software, and isolated
camera deployments from various service providers. We
propose a paradigm shift towards software-defined video an-
alytics, where analytic logics are decoupled from deployed
cameras. This allows for dynamic composition and execu-
tion of analytic services on demand, without altering or
accessing the hardware. For instance, individual shops may
wish to run different analytic services using camera streams
provided by shopping malls. However, camera parameters
may be accessible only to the camera provider (e.g., owner
of the shopping mall) and can change without notice de-
pending on the provider’s requirements. In contrast, Argus,
relying solely on camera streams, can still be implemented
and supported on the video analytics’ side.

7.1.2 Systems for Cross-Camera Collaboration

Enriched video analytics. One direction for cross-camera
collaboration is to provide enriched and combined video
analytics from different angles and areas of multiple cam-
eras [45], [46], [47]. Liu et al. developed Caesar [45], a system
that detects cross-camera complex activities, e.g., a person
walking in one camera and later talking to another person
in another camera, by designing an abstraction for these
activities and combining DNN-based activity detection from
non-overlapping cameras. Li et al. presented a camera collab-
oration system [46] that performs active object tracking by
exploiting the intrinsic relationship between camera posi-
tions. Jha et al. developed Visage [47] which enables 3D im-
age analytics from multiple video streams from drones. Our
work can serve as an underlying on-camera framework for
these works, providing multi-camera, multi-task tracking as
a primitive task on distributed smart cameras.

Resource efficiency. Another direction for cross-camera col-
laboration is to reduce the computational and communi-
cation costs of multiple video streams by exploiting their
spatial and temporal correlation [2], [3], [19]. Jain et al.
proposed Spatula [2], [19], a cross-camera collaboration
system that targets wide-area camera networks with non-
overlapping cameras and limits the amount of video data
and corresponding communication to be analysed by iden-
tifying only those cameras and frames that are likely to
contain the target objects. REV [1] also aims at reduc-
ing the number of cameras processed by incrementally
searching the cameras within the overlapping group and
opportunistically skipping processing the rest as soon as
the target has been detected. CrossRoI [3] and Polly [48]
leverages spatial correlation to extract the minimum-sized
RoI from overlapping cameras and reduces processing and
transmission costs by filtering out unmasked RoIs. All such
works share the same high-level goal as Argus in that they
leverage spatio-temporal correlation from multiple cameras,
but Argus differs in several aspects, as shown in Table 1.

Distributed processing. There have been several attempts
to distribute video analytics workloads from large-scale
video data to distributed cameras [39], [49]. VideoEdge [49]
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optimises the trade-off between resources and accuracy by
partitioning the analytics pipeline into hierarchical clusters
(cameras, private clusters, public clouds). Distream [39]
adaptively balances workloads across smart cameras. Al-
though this work provided a foundation for the devel-
opment of distributed video analytics systems, it mainly
focused on the video analytics pipeline with one camera
as a main workload. In this work, we identify that multi-
camera, multi-target tracking is a primary underlying task
for overlapping camera environments, and propose an on-
camera distributed processing strategy tailed to it.

7.2 Resource-Efficient Video Analytics Systems

On-device processing. Many video analytics systems have
been proposed to efficiently process a large volume of
video data on low-end cameras, e.g., by adopting on-camera
frame filtering [50], [51], [52], pipeline adaptation [53], [54],
edge-cloud collaborative inference [38], [55], [56], [57], [58]
RoI extraction [59], [60], [61], [62], [63]. On-camera frame
filtering techniques filter out the computationally intensive
execution of vision models in the early stages, e.g., by
dynamically adapting filtering decisions [51] and leveraging
cheap CNN classifiers [50]. Yi et al. presented EagleEye [54],
a pipeline adaptation system for person identification that
selectively uses different face detection models depending
on the quality of face images. MARLIN [53] has been
proposed to selectively perform a deep neural network for
energy-efficient object tracking.

Computation offloading. Several attempts have been made
to dynamically adjust video bitrate to optimise the net-
work bandwidth consumption to enable low-latency of-
floading [62], [64], [65], optimise the video streaming proto-
col [63], and design DNN-aware video compression meth-
ods [66], [67]. The other direction for efficient processing is
DNN inference scheduling from multiple video streams on
the GPU cluster [17], [18], [68], DNN merging for memory
optimisation [69], privacy-aware video analytics [70], [71],
and resource-efficient continual learning [72], [73].

While these works manage to achieve remarkable per-
formance improvement, their attempts usually focus on a
single camera (or its server). In contrast to these works, we
target an environment where multiple cameras are installed
in close proximity, and focus on optimising cross-camera
operations by leveraging the spatio/temporal association of
objects. Argus can further improve system-wide resource
efficiency by applying these techniques.

8 DISCUSSION AND FUTURE WORKS

Why on-device processing on distributed smart cameras?
The cost of video analytics is becoming a huge problem due
to the enormous amount of video data. The authors [74]
studied the six-month deployment of over 1000 cameras at
Peking University, China, and reported that the cameras
produced over 3 million hours of videos (5.4 PB). If we
assume a simple application using the ResNet-18 model
at 30 frames per second continuously, the estimated ML
operating expenses (OpEx) for six months would be 3.83
million USD if ML inference is executed on the Amazon

EC2 server4; it will be much higher when the network costs
for 5.4 PB of video data are added. The bigger problem is
that, even with excessive cameras, most of the video stream
is never used. The study [74] further showed that less than
0.005% of the video data is retrieved and used by less than
2% of the cameras.

To address this problem, on-camera AI processing is
becoming increasingly popular [39], [74], [75], enabled by
two recent technology trends. First, low-cost, low-power
and programmable on-board AI accelerators are becoming
available [5], such as Nvidia Jetson, Google TPU and Ana-
log MAX78000. Second, lightweight, accurate and robust
embedded-ML models are emerging [12], [13]. Most im-
portantly, on-device processing is preferred as the privacy-
sensitive raw image data does not need to be transferred to
the cloud.

Incorporation with non-overlapping camera collaboration.
Argus currently targets cross-camera collaboration within a
closed set of cameras. However, analytics applications might
want to track objects in a wide area where large camera
networks, including non-overlapping cameras, are installed,
e.g., suspect monitoring in a large shopping mall or traffic
surveillance in an urban city. Our ultimate goal is to develop
a system that supports seamless and efficient tracking across
overlapping and non-overlapping cameras by adopting the
solutions for non-overlapping cameras [2], [19].

Support for diverse coordination topologies. For cross-
camera coordination, we assume a star topology where the
most powerful camera becomes the head in a group, schedul-
ing multi-camera multi-target tracking operations for all
cameras and the other cameras become group members that
follow the head’s decision. We believe that our decision
is practical because the coordination overhead is marginal
as shown in §6.9, but sophisticated coordination would be
necessary if more cameras are involved.

Further optimization by splitting AI models Argus treats
AI models as a black box, thereby taking their full execution
as a primitive task for distributed processing. Splitting deep
neural networks into distributed cameras, e.g., Neurosur-
geon [57], would allow further optimisation if we can have
access to the weights of the pre-trained models. We leave it
as future work.

Cross-camera communication channel. For the commu-
nication channel between cameras, we consider a Gigabit
wired connection, which is already commonly used for
existing CCTV networks, e.g., at an intersection [4] and
a campus [20]. Considering that overlapping cameras are
deployed in proximity to each other, such an assumption
would be still valid even in other environments. However,
when the communication channel is constrained, e.g., over
cellular networks, the network overhead may dominate
and the latency improvement achieved by multi-camera
parallel processing could be less than expected. We leave
the detailed analysis as future work.

4. 100K inferences of ResNet18 costs 0.82 USD and the total number
of inferences is 466,560,000,000 (= 30 fps × 60 sec × 60 min × 24 hrs ×
180 days × 1,000 cameras).
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9 CONCLUSION

We presented Argus, a first-kind-of distributed system for
robust and low-latency video analytics with cross-camera
collaboration on multiple cameras. We developed a novel
object-wise spatio-temporal association that optimises the
multi-camera, multi-target tracking by intelligently filtering
out unnecessary, redundant identification operations. We
also developed a distributed scheduling technique that dy-
namically orders the sequence of camera and bounding box
inspection and distributes the identification workload across
multiple cameras. Evaluation on three real-world overlap-
ping camera datasets shows that Argus reduces the number
of identification model executions and end-to-end latency
by up to 7.13× and 2.19× (4.86× and 1.60× compared to
the state-of-the-arts).
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