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ABSTRACT
As wearable devices become increasingly miniaturized and
powerful, a new opportunity arises for instant and dynamic
device-to-device collaboration and human-to-device inter-
action. However, this progress presents a unique challenge:
these minimalist wearables lack inherent mechanisms for
real-time authentication, posing significant risks to data pri-
vacy and overall security. To address this, we introduce Pro-
teus that realizes an innovative concept of time-bound contex-
tual bio-IDs, which are generated from on-device sensor data
and embedded into a common latent space. These bio-IDs
act as a time-bound unique user identifier that can be used to
identify the wearer in a certain context. Proteus enables dy-
namic and contextual device collaboration as well as robust
human-to-device interaction. Our evaluations demonstrate
the effectiveness of our method, particularly in the context
of minimalist wearables.

1 INTRODUCTION
Wearable technology has emerged as an integral part of
modern society, with a vast array of applications ranging
from health monitoring to activity tracking and beyond. As
these devices shed screen-based interactions and integrate
ML through tiny AI accelerators [19], they are becoming
increasingly miniaturized, while still remaining powerful.
Examples include smart earbuds, smart rings, and fitness
bands—what we term “minimalist wearables”. These tiny
form factors make it likely that we will soon find ourselves
surrounded by an ever-growing number of such devices.
This trend opens new opportunities in device-to-device

collaboration and human-to-device interaction. For instance,
dynamic and contextual device collaboration can lead to
enriched and seamless context monitoring in a more ac-
curate and energy-efficient manner [18]. Additionally, the
nature and multiplicity of these wearables make them ideal
for shared use, such as listening to music together through
a single pair of earbuds or sharing smart wristbands in a
factory setting. Despite such benefits, minimalist wearables
present a unique challenge: they lack inherent mechanisms

for instant and dynamic authentication for users and de-
vices. Typically, during the initial Bluetooth pairing with a
user’s device, wearables are associated with a user’s account
and rely on this static link for all subsequent interactions
and data management. Once worn, these wearables oper-
ate without additional authentication steps. However, this
lack of real-time verification poses significant risks, such
as unauthorized usage or misinterpretation of data, thereby
highlighting a substantial vulnerability and compromising
both data privacy and the overall security [2, 17].
To address this risk, we propose an innovative concept,

time-bound contextual bio-ID, which can support dynamic
and contextual device collaboration and interaction on the fly.
These bio-IDs are representations of sensor data embedded
into a common latent space, ideally universal for an individ-
ual irrespective of device placement, but distinct for different
users or at different times. We develop Proteus, a framework
that generates time-bound contextual bio-IDs from Inertial
Measurement Unit (IMU) and Photoplethysmography (PPG)
sensors. The key idea is to extract a common latent space
of sensor data by leveraging contrastive learning [6]. More
specifically, in our framework, sensor data from multiple
wearables worn by the same user at the same time serve as
positive pairs for contrastive learning, encouraging similar
embeddings, while data from different users or different time
points act as negative pairs, pushing for disparate embed-
dings. This time-bound contextual bio-ID concept ensures
we have accurate embedded representations to enable ro-
bust human-to-device and device-to-device matching even
in minimalist wearables.

2 MOTIVATION AND CHALLENGES
We discuss the driving motivation behind generating time-
bound contextual Bio-IDs and illustrate their usefulness through
a discussion of use cases. Lastly, we review the main chal-
lenges to create the Bio-IDs.

Why Time-Bound? As our digital ecosystem continues
to grow increasingly interconnected, the urgency for secure,
efficient, and adaptable authentication methods intensifies.
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Traditional authentications, like passwords or biometrics,
offer high security but are static in nature, lacking the ability
to adjust dynamically based on real-time context or instant
device-to-device collaboration. To address this, we propose
an innovative concept of time-bound contextual bio-IDs. This
approach not only provides robust security through the fu-
sion of vital signs but also incorporates a layer of temporal
flexibility. This time-sensitive aspect enables dynamic access
control, streamlines multi-device authentication, and allows
for personalized, context-aware multi-device collaboration.
Why Vital Signs? They are an intuitive choice for the

time-bound contextual bio-IDs, particularly when utilizing
the functionalities of current wearable technology. These
wearables are commonly outfitted with a diverse range of
sensors that are tailored to monitor human physiology and
behavior in real-time. Such devices record key metrics in-
cluding heart rate, heart rate variability, oxygen saturation,
respiration rate, and blood pressure [11]. These metrics are
inherently universal for an individual regardless of the device
placement, but unique according to individual’s dynamic and
contextual factors [4, 5].
These vital signs are already monitored for health and

wellness purposes, e.g., using PPG, and are also affected by
physical activity, which can be measured through existing
IMU sensors. By using these common sensors, we can gen-
erate time-bound contextual bio-IDs without the need for
extra hardware or complicated user interactions.

2.1 Use cases
Instantaneous device association. The proposed system
allows for immediate and secure device association using
bio-IDs. For example, upon purchasing a new smart ring,
users can easily associate it with their smartphone. By plac-
ing the ring-wearing finger against the rear camera of the
smartphone, vital signs such as heart rate and heart rate vari-
ability can be captured both on a smartphone [1] and a smart
ring [25]. These vital signs are then used to generate bio-IDs
that can be compared with each other, facilitating immediate
and secure device pairing without manual configuration.
Seamless authentication across wearables. Current

minimalist wearables lack continuous authentication capa-
bilities, posing potential security risks, especially in shared-
use scenarios. For example, today’s smart earbuds are not
capable of discerning whether they are being used by the
authenticated owner or someone else. Proteus provides a
solution by continuously comparing vital signs from left and
right earbuds and verifying the user. This allows the system
to filter out sensitive information to dynamically adapt to
different users, e.g. notifying an incoming message rather
than reading out its contents.

Dynamic access control for contextual device collab-
oration. Typically, once wearables mutually authenticate,

Figure 1: Accelerometer from headband and wristband
(left) and PPG from left and right earbuds (right).

they operate under the assumption that a secure connection
is maintained indefinitely. Our proposed system challenges
this static approach by incorporating dynamic, time-sensitive
access control based on real-time bio-ID verification. If a
smartwatch app aims to collaborate with earbuds for body
gesture recognition while the user is sitting, time-bound ac-
cess to the earbuds’ data can be granted accordingly, thereby
preventing the app from accessing the earbuds at an un-
wanted time.

2.2 Challenges
• Device and sensor heterogeneity. The first challenge

lies in the heterogeneity of device architecture and sensor
placement. This results in the same physiological and be-
havioral contexts being captured differently across various
devices (see Figure 1), complicating the process of fusing
sensor data to generate a reliable and contextual bio-ID.

• Scalability concerns. As the number of wearable devices
in the ecosystem increases, the task of managing unique
bio-IDs for each sensor, device, user, and activity becomes
increasingly complex and computationally intensive, pos-
ing significant scalability challenges.

• Immediate usability requirement. The system must
have the capability to generate a bio-ID immediately upon
device deployment, and this needs to occur without requir-
ing any additional intervention from the user, adding a
layer of complexity to system design and implementation.

3 PROTEUS
A straightforward way to generate bio-IDs would be to ex-
tract and combine device/sensor-specific features or absolute
values of various vital signs. However, sensor readings or fea-
tures from these devices exhibit variability due to heterogene-
ity in device location, hardware specifications, and software
characteristics. Conversely, establishing a unique bio-ID for
every potential device combination would encounter signifi-
cant scalability challenges (§2.2). We introduce the universal
embedding bio-ID generation approach: generating embed-
dings from live sensor data such that the bio-ID appears
similar across different devices worn by the same user at the
same time. This approach allows us to create a unique, time-
sensitive bio-ID by focusing on common embeddings rather
than specific features or absolute values of vital signs. The
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benefits of this method are threefold: (1) It addresses device
and sensor heterogeneity by creating normalized, embed-
ded representations that are common across various devices.
(2) It simplifies the system architecture and alleviates the
need to manage numerous model combinations, effectively
addressing scalability issues. (3) It allows for an immediate
bio-ID generation as soon as the device is deployed, without
requiring additional user-side training.
There are various methods for extracting shared embed-

dings from diverse signals, including autoencoders [15, 16],
Siamese networks [8], and contrastive learning [6, 13, 20].
In this paper, we have chosen contrastive learning for sev-
eral compelling reasons: (a) it has recently demonstrated
impressive capabilities in extracting robust representations,
(b) it possesses the ability to capture intricate nonlinear rela-
tionships, and (c) we can naturally adapt it to multi-device
environments. Contrastive learning is primarily employed
in self-supervised machine learning to learn representations
by contrasting positive and negative examples [6, 13] . In a
typical setting, similar data points are pulled closer in the
embedding space, while dissimilar ones are pushed apart.
For our application, this framework naturally aligns with the
availability of sensor data from multiple wearable devices
used by a single user. Such data can be treated as positive
pairs, encouraging the model to generate similar embeddings
for them. Data from different users or from the same user
at different time points can be considered as negative pairs,
driving the model to produce disparate embeddings.

3.1 System Operation
Proteus operates as follows: Initially, a global bio-ID model
is generated on the server side, trained using a global dataset
that accounts for various sensor combinations. Upon deploy-
ing devices to new users, appropriate models are downloaded
based on the sensors available, and bio-IDs are produced by
running these models on real-time sensor data. The model
can be personalized and updated with individual user data,
which we leave as future work.

AdaptiveModel Selection.To generate the bio-IDmodel,
we face a design trade-off between model complexity and
real-time performance. One strategy would be to train sepa-
rate models for each sensor type. While this offers simplicity
in model design and flexibility in deployment, it limits the
model’s ability to leverage inter-sensor relationships and cor-
relations, thus potentially sacrificing performance. Another
approach would be to construct a monolithic model that
ingests data from an entire set of possible sensors on wear-
ables. However, this is not practical for real-life applications
due to the variations in available sensors across different
devices. For example, filling zero values for unavailable sen-
sors would lead to potentially lower runtime performance.

To address these challenges, we dynamically select the most
appropriate embedding models based on the overlapping
sensors available at runtime. This allows for maximum flexi-
bility and performance optimization but comes at the cost of
a training overhead. We consider this overhead acceptable as
the computational burden falls on the server side and needs
to be carried out only once, prior to deployment.
Bio-ID Model Training. Recently, contrastive learning-

based techniques emerged to learn common embedded rep-
resentations from sensor data such as Contrastive Predictive
Coding [12], SimSiam [7], and SimCLR [6, 21]. Our approach
builds upon SimCLR [6] due to its capacity to accommodate
varying batch sizes, thereby reducing memory consumption.
SimCLR demonstrates promising outcomes when applied to
smaller datasets [21], unlike the vast volumes of data avail-
able in vision or audio domains. We adapt original SimCLR
as follows: we designate time-aligned sensor data of the same
user from multiple wearable devices as positive pairs, while
treating data from other users and different time instances as
negative pairs. When the number of devices associated with
a given set of available sensors is more than two, we enhance
the neural network’s generalization capability by randomly
selecting two distinct devices in each batch training. The
embedded representations are structured in the form of 1D
arrays and are further processed for matching purpose. Even
when the raw data does not show correlation, the resulting
embeddings are expected to be aligned when the devices are
on the same body at the same time and not aligned when
the data was captured from the same body but at different
times, or on different bodies (see Fig. 2).
Our model’s network architecture is inspired by recent

work [21]. The base network consists of three convolutional
blocks and one max-pooling layer. Each convolutional block
includes a 1D Convolutional layer, ReLU activation, Batch-
Norm, and Dropout. A projection head with three fully con-
nected layers along with ReLU activation layers is attached
to the base network. To extract representations for time-
bound contextual bio-IDs in the latent space, we optimize
our objective with SGD, starting with a learning rate of 0.1
and progressively reducing it via Cosine Decay. Our model
undergoes training for a device- or sensor-specific epochs
until it converges.
Bio-ID Matching. The next critical step is to perform

efficient and accurate Bio-ID matching between different
devices (see the use cases in §2.1). We employ a set of fully-
connected layers that are designed to take two embeddings
as input and output a binary label, indicating whether the
embeddings match (“matched”) or not (“unmatched”). We
train these fully-connected layers using labeled data, ensur-
ing that the model generalizes well to real-world scenarios.
This architecture is particularly beneficial for Proteus, as it
allows us to extend the matching process to an ensemble
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Figure 2: Example of PPG (left) and embeddings (right)
on two earbuds. (A) Same user, time-aligned; (B) Differ-
ent users; (C) Same user, non time-aligned.

learning approach for global decision-making when more
than two devices are involved.

4 EVALUATION
We first assess the bio-ID generation process, focusing on
how similar bio-IDs are created to each other even with
device placement heterogeneity. Then, we evaluate the per-
formance of bio-ID matching, considering different combi-
nations of sensors and devices, and different user activities.

4.1 Experimental Setup
Dataset. The experiments are run using the FatigueSet

dataset [14], which encompasses a diverse range of multi-
device (earbuds, wristband, headband) andmulti-sensor (IMU,
PPG) data collected from twelve participants performing var-
ious physical and mental activities. The PPG data obtained
from earbuds was sampled at a rate of 100 Hz, while the IMU
data was sampled at rates of 100 Hz, 52 Hz, and 32 Hz from
earbuds, headband, and wristband, respectively. To ensure
consistency, we re-sampled all data at 100 Hz, applied stan-
dard scaling to normalize it, and then divided the normalized
data into segments (without overlap) with window sizes of
20 seconds (IMU only) and 30 seconds (PPG only, IMU/PPG).

Metrics. We quantitatively assess the performance of Pro-
teus by using the True Positive Rate (TPR), False Positive
Rate (FPR), and False Negative Rate (FNR) to measure the ef-
fectiveness and reliability of bio-ID generation and matching
in different scenarios. Here, TPR measures the rate at which
genuine users are successfully authenticated by our system,
FPR the rate of incorrect authentication (for imposters), and
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Figure 3: Bio-IDGeneration (Left) andMatching (Right)

FNR the rate of rejection for genuine users (resulting in de-
creased usability). An ideal bio-ID generation system would
thus maximise TPR and minimise FPR and FNR.

4.2 Bio-ID Generation
We conducted a thorough analysis of the bio-ID generation
process to evaluate its performance in terms of uniqueness,
robustness, and temporal stability. This analysis aimed to
ensure that the generated bio-IDs accurately represented in-
dividual wearer patterns and remained consistent to support
the bio-ID matching process over time.
For this purpose, we define the following experiment on

the FatigueSet user’s data — we split the dataset into three
different groups: group A represents the sensor readings
from the same user’s two devices at different times; group B
represents the data coming from two different users’ de-
vices; and group C represents the sensor readings from the
same user’s two different devices at the same time. Fig. 3
(left) shows the distribution of the embedding similarity, cal-
culated using Spearman’s rank correlation coefficient (also
known as Spearman’s 𝜌 ) [24]. We chose to calculate Spear-
man’s 𝜌 , as a non-parametric measure that does not assume
any specific underlying data distribution. Values close to 1
indicate a strong positive similarity, while values near -1
suggest strong negative dissimilarity, and values around 0
denote no discernible similarity.
The experimental results for Group C, which includes

embeddings of the same user from two different devices ac-
quired simultaneously, show that the data is centered around
the right tail (𝜇=0.75, 𝜎=0.20). This compellingly demon-
strates that our method maps raw data from two distinct
devices and locations of the same user at the same time to a
similar representation space. In contrast, we can see that for
Group A (𝜇=0.13, 𝜎=0.34) and Group B (𝜇=0.12, 𝜎=0.31), the
data is clustered around 0. This implies that the generated
embeddings are distant from each other in the latent space.

4.3 Bio-ID Matching
We further validate the effectiveness of Proteus with bio-ID
matching. To examine the overall matching performance,
we split the dataset into two groups: group 1 represents the
IMU and PPG data from left and right earbuds, and group 2
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Sensor Selection Device Placement Results

L.
Ea
r
R.
Ea
r

He
ad

W
ris
t

TP
R

FP
R

FN
R

Accelerometer G# G# G# G# 0.71 0.22 0.29
– –   0.63 0.24 0.37
 –  – 0.79 0.26 0.21
  – – 0.81 0.26 0.19
 – –  0.60 0.24 0.40
–   – 0.82 0.22 0.18
–  –  0.60 0.23 0.40

Gyroscope G# G# G# – 0.72 0.15 0.28
 –  – 0.72 0.21 0.28
  – – 0.80 0.17 0.20
–   – 0.64 0.16 0.36

Acc & Gyro G# G# G# – 0.76 0.22 0.24
 –  – 0.77 0.22 0.23
  – – 0.81 0.24 0.19
–   – 0.69 0.28 0.31

Table 1: Results of experiments
 = selected,G# = randomised selection, – = not selected

represents the IMU data from four devices (left and right
earbuds, headband, wristband). Our results provide an overall
promising start. First, when two sensors are used together
in group 1, Proteus shows a consistent correct matching
with high TPR of 84% but with low FPR of 9% and FNR of
16%. We further investigate the matching performance only
when the IMU data is used in group 2. Despite the influence
placement has on IMU sensors, we still see a reasonable
correct matching over in over 70% of cases (see first row of
each sensor selection in Table 1).

4.3.1 Effect of Physical and Mental Activities. First, the Fa-
tigueSet dataset splits the data into three distinct phases: no
activity, physical activity, and mental activity. No activity is
an initial phase of the data capture where users relax (still
and not performing any intensive mental activity either).
We run our Bio-ID generation and matching for the sensor
data in each of these different activity types. Fig. 3 (right)
shows the bio-ID matching performance for the different
activities. All available sensors (IMU and PPG) were used
in this experiment. We observe consistent TPR greater than
80% – it ranges between 83% to 89% across each activity type.

4.3.2 Effect of Device Placement. We look in detail at the
effect of device placement (left and right ears, head or wrist)
and sensor combination (accelerometer and gyroscope). The
results are shown in Table 1. Accelerometer was available in
all four devices, while gyroscope was not available in wrist-
band, so the combination of accelerometer and gyroscope
was also used in at most three devices.Whenwe randomly se-
lect two devices out of four or three available devices, the TPR
is always higher than 70%, while offering FPR and FNR rates
lower than 22% and 29%, respectively. Across various sensor

configurations, it becomes apparent that optimal matching is
achieved when the selected devices are located in close prox-
imity and exhibit similar movement patterns (e.g., left and
right earbuds). In such scenarios, the TPR exceeds 80%, with
FPR and FNR both under 26% and 20%, respectively. Con-
versely, when the selected devices are positioned far apart
(e.g., the right ear and wrist), the matching performance
tends to decline. Additionally, combining accelerometer and
gyroscope data tends to yield superior results.

5 RELATEDWORK
Existing passwordless device authentication relies on spe-
cialized hardware like fingerprint readers, retina scanners,
or custom biometric modules. These systems typically come
with higher costs, limited device compatibility, and a focus
on human-to-device authentication rather than device-to-
device interaction. There have been active research efforts to
realise authentication with wearable sensors such as motion
sensors, PPG, ECG, and EMG by capturing unique behav-
ioral or physiological patterns [3]. For instance, user veri-
fication may involve gait analysis with motion sensors on
smartwatches [23] and earbuds [10], or heart rate analysis
with PPG [22] and ECGs [9]. Despite the advancements in
wearable-based authentication, our approach stands out in
two key respects. Firstly, it is designed to be time-bound and
contextual, adapting to dynamic shifts in a user’s behavior
and environment. Secondly, our method can be immediately
deployed without any user interaction, eliminating the need
for user intervention during the enrolment process.

6 LIMITATIONS AND FUTUREWORK
Dataset: We observe that the dataset consists of a relatively
small pool of 12 participants, which raises questions about
the generalizability of our findings. Additionally, the sensor
types are confined to IMU and PPG, excluding other potential
sensing modalities that could provide more nuanced insights.
Furthermore, the devices were deployed on only four specific
body positions, limiting the breadth of scenarios. While the
outcomes are indeed promising, these dataset limitations
emphasize the need for future work involvingmore extensive
and diversified datasets.
Heterogeneous sensor sets and application require-

ments: The current study focuses on scenarios where two
devices feature the same set of sensors, thereby simplifying
the embedding generation and matching process. However,
the complexity of these operations increases substantially
when dealingwithmultiple wearables equippedwith varying
sensor types. Additionally, different apps may have varying
requirements for authentication; for example, casual apps
might prioritize energy efficiency, while mission-critical apps
may demand high accuracy. These aspects necessitate a more
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dynamic and context-aware approach for bio-ID generation
and matching, opening up avenues for future research.

Privacy and security concerns:While our time-bound
contextual bio-IDs enablemore secure and dynamic device/user
authentication, they might still pose privacy and security
concerns, especially when embeddings are shared between
(malicious) devices. In its current form, the system directly
transmits raw embedding data, potentially exposing sensi-
tive biometric information. To address this challenge, we
can consider the incorporation of hashing algorithms and
encryption into Proteus. By converting these sensitive em-
beddings into these formats, we could enhance security and
privacy measures while maintaining the overall efficacy.

7 CONCLUSION
We use everyday wearable sensors to provide a cost-effective
way towards the generation of time-bound contextual bio-ID.
Our evaluation highlights the generation accuracy to provide
close embeddings when the data comes from devices on the
same body at the same time, and versatility across various
wearable configurations and activities. This advancement
marks a significant step towards enabling seamless minimal-
ist wearable authentication, promising a secure and seamless
user-device interaction and device-device collaboration.
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