
98

SensiX++: Bringing MLOps and Multi-tenant Model Serving

to Sensory Edge Devices

CHULHONG MIN, AKHIL MATHUR, UTKU GÜNAY ACER,
ALESSANDRO MONTANARI, and FAHIM KAWSAR, Nokia Bell Labs, UK

We present SensiX++, a multi-tenant runtime for adaptive model execution with integrated MLOps on edge

devices, e.g., a camera, a microphone, or IoT sensors. SensiX++ operates on two fundamental principles: highly

modular componentisation to externalise data operations with clear abstractions and document-centric man-

ifestation for system-wide orchestration. First, a data coordinator manages the lifecycle of sensors and serves

models with correct data through automated transformations. Next, a resource-aware model server executes

multiple models in isolation through model abstraction, pipeline automation, and feature sharing. An adap-

tive scheduler then orchestrates the best-effort executions of multiple models across heterogeneous accel-

erators, balancing latency and throughput. Finally, microservices with REST APIs serve synthesised model

predictions, system statistics, and continuous deployment. Collectively, these components enable SensiX++

to serve multiple models efficiently with fine-grained control on edge devices while minimising data opera-

tion redundancy, managing data and device heterogeneity, and reducing resource contention. We benchmark

SensiX++ with 10 different vision and acoustics models across various multi-tenant configurations on differ-

ent edge accelerators (Jetson AGX and Coral TPU) designed for sensory devices. We report on the overall

throughput and quantified benefits of various automation components of SensiX++ and demonstrate its effi-

cacy in significantly reducing operational complexity and lowering the effort to deploy, upgrade, reconfigure,

and serve embedded models on edge devices.

CCS Concepts: • Computer systems organization→ Embedded software; Redundancy; Special purpose

systems;

Additional Key Words and Phrases: MLOps, multi-tenancy, model serving, edge

ACM Reference format:

Chulhong Min, Akhil Mathur, Utku Günay Acer, Alessandro Montanari, and Fahim Kawsar. 2023. SensiX++:

Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices. ACM Trans. Embedd. Comput.

Syst. 22, 6, Article 98 (November 2023), 27 pages.

https://doi.org/10.1145/3617507

1 INTRODUCTION

The recent emergence of edge accelerators has radically transformed the analytical capabilities

of low-power and low-cost sensory edge devices such as cameras, microphones, or IoT devices.

These edge devices can now perform cloud-scale, processing-intensive machine learning (ML)

Authors’ address: C. Min, A. Mathur, A. Montanari, and F. Kawsar, Nokia Bell Labs, 21 J J Thomson Avenue, Cambridge,

CB3 0FA, UK; e-mails: chulhong.min@nokia-bell-labs.com, akhil.mathur@nokia-bell-labs.com, alessandro.montanari@

nokia-bell-labs.com, fahim.kawsar@nokia-bell-labs.com; U. G. Acer, Nokia Bell Labs, Copernicuslaan 50, 2018 Antwerpen,

Belgium; e-mail: utku_gunay.acer@nokia-bell-labs.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/11-ART98 $15.00

https://doi.org/10.1145/3617507

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-1475-3017
https://orcid.org/0000-0001-7222-2145
https://orcid.org/0000-0003-4444-6242
https://orcid.org/0000-0001-5057-9557
https://doi.org/10.1145/3617507
mailto:permissions@acm.org
https://doi.org/10.1145/3617507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617507&domain=pdf&date_stamp=2023-11-09

98:2 C. Min et al.

inferences locally and eliminate the need to send a large amount of privacy-sensitive data to remote

data centres, thereby offering benefits in efficiency, speed, availability, and privacy [49, 59]. This

possibility has uncovered a new era of affordable artificial intelligence (AI) applications, from

personal assistants to recommendation systems to video surveillance available through various

edge devices [10, 23, 32, 35, 37, 48, 53, 63].

Today, most ML capabilities embedded in edge devices are limited to inference tasks, i.e., the

point at which all the data-driven learning accumulated during training in a data centre is de-

ployed on real-world data to infer a prediction. This task entails (i) preparing the data acquired

from a real-world sensor (e.g., pixels from an image sensor or waveforms from a microphone) to

a compatible input format, (ii) executing the model within a model-specific framework (e.g., Ten-

sorFlow or PyTorch), and (iii) serving the inferences through well-defined interfaces (e.g., REST

APIs). Some applications might demand these devices to store inferences to support historical

queries and offer provisioning schemes for deployment. Collectively, these operations represent a

subset of Machine Learning Operations (MLOps) on edge devices.

We have seen significant efforts from academia and industry to offer toolkits to facilitate and ac-

celerate the execution of ML models on edge devices [21, 22, 25, 34, 38, 41, 44, 45, 50, 56]. However,

they lack this end-to-end view. For instance, these solutions require expensive and manual inter-

vention to prepare and transform input data. Also, if done inadequately, the model’s performance

suffers in the new operating environment due to data and device heterogeneity [17, 40, 42–44].

Furthermore, multi-tenancy support is only available in cloud-scale model-serving systems (e.g.,

[20, 46]). Thus, sensory edge devices are often constrained to provide a specific, pre-defined ML

task, and the chance for utilising those devices as general-purpose ML compute devices is ac-

cordingly limited. By overcoming these challenges, we envision unleashing a new paradigm of

software-defined sensors. For instance, a software-defined camera can perform multiple and differ-

ential inference tasks assisted by automated MLOps to serve various applications simultaneously

or on-demand with zero reliance on distant clouds. Such abilities will transform today’s dumb

and hard-coded sensory edge devices into dynamic, re-configurable, and intelligent computing

platforms.

To this end, we present SensiX++, a multi-tenant model-serving system with integrated MLOps

for software-defined sensory edge devices. SensiX++ reduces operational complexity, minimises

redundant data operations,1 eliminates manual intervention, and achieves two crucial properties:

high inference throughput and low inference latency. SensiX++ follows a modular system design

and applies declarative abstraction principles across its various components, enabling different

models and respective pipelines to be managed and configured automatically on different accel-

erators (Section 4.2). In addition, SensiX++ externalises system-wide data operations away from

model execution, thereby enabling multiple models to share identical data transformation and

featurisation pipelines.

SensiX++ consists of four main components. First, a data coordinator manages the lifecycle

of sensors and serves models with correct input data through automated transformations, i.e.,

resolution scaling, sample scaling, or dynamic encoding (Section 5.1). Second, a resource-aware

model server executes multiple models in isolation through model abstraction and pipeline au-

tomation (Section 5.3). This component dynamically constructs model-specific pipeline containers

with appropriate frameworks (TensorFlow, TensorFlow Lite, or PyTorch), considering available

processing resources while meeting latency and throughput requirements. This component also

leverages a novel feature-sharing functionality that enables multiple models to share a common

1Different ML models often use the same data operations before feeding the data to task-specific classifiers, e.g., Mel-

filterbank generation for audio signals and frequency-domain feature generation for inertial sensor data.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:3

featurisation pipeline, when possible. The third component of SensiX++ is a low-overhead sched-

uler that orchestrates the best-effort executions of multi-tenant models across heterogeneous

accelerators, balancing latency and throughput by applying multiple optimisation heuristics

(Section 5.2). Finally, the fourth component of SensiX++ encompasses a set of microservices with

REST APIs to serve synthesised inferences and continuous deployment (Section 5.4).

We implemented SensiX++ in Python and NodeJS, deployed it on Jetson AGX and Coral TPU as

representative edge accelerators, and added support for widely used embedded ML frameworks,

such as TensorFlow, TensorRT, PyTorch, and so forth. Given the dramatic cost reduction of these

boards, in conjunction with increasingly cheap compute storage, we expect them to soon feature

in commodity scale edge devices, such as a smart camera or a smart speaker. We evaluate Sen-

siX++ with 10 different vision and acoustics models across various multi-tenant configurations

and demonstrate that SensiX++ offers balanced throughput and latency in a best-effort manner.

We also quantify various components of SensiX++ to prove its efficacy in reducing operational

complexities in serving multiple models. In summary, our contributions to this article include the

following:

— We present SensiX++, the first-of-its-kind framework that serves multi-tenant models with

automated MLOps on sensory edge devices.

— We devise a novel declarative abstraction mechanism for system-wide orchestration, auto-

mated data operation, and pipeline construction for heterogeneous models.

— We identify the technical challenges to serve multi-tenant models on edge devices. Then, we

devise a set of novel techniques achieved through adaptive scheduling, feature caching, and

shared data operation to reduce and bound latency while maximising throughput, and we

prototype the end-to-end, integrated system.

— We demonstrate the efficiency and efficacy of the system through extensive experiments.

2 RELATED WORK

SensiX++ is designed for serving multiple models with automated MLOps on sensory edge devices.

In this section, we review related research in these two areas.

2.1 Serving Models on Edge Devices

Unlike model training that happens offline, inference usually serves applications directly and needs

to be resource efficient. Naturally, this requirement has drawn significant attention and many tech-

niques have been proposed including architecture scaling [13, 22, 34, 47, 50], model compression

and quantisation [16, 24, 25, 38], pruning [36, 39, 64], accelerator-aware compilation [12, 51, 56],

model partitioning [31, 33, 62], logic-based inference algorithms [14, 15], and system support for

IoT devices [11, 28, 55].

While models that run on SensiX++ can benefit from these techniques to meet latency or ac-

curacy targets, the core model-serving capabilities of SensiX++ are independent of this aspect. In

addition, model efficiency alone is insufficient to meet system-wide performance in a multi-tenant

setting. SensiX++ is designed to make systematic decisions concerning how to run various models

with different runtime and performance constraints on edge devices to offer predictable through-

put and latency. A few research studies that come close to these objectives are NestDNN [21], Hive-

Mind [52], DeepEye [41], and BAND [30]. In NestDNN [21], Fang and his colleagues transform

multiple mobile vision models into a single, multi-capacity model consisting of a set of descent

models with graceful performance degradation to serve continuous mobile vision applications. In

a related effort, although cloud-scale, Narayanan et al. proposed HiveMind [52] that compiles mul-

tiple models into a single optimised model by performing cross-model operator fusion and sharing

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:4 C. Min et al.

I/O across models to optimise GPU parallelisation. In [41], Mathur and his colleagues present an

execution framework that carefully segregates and schedules different computational layers of

multiple models. These research efforts offer an excellent foundation for our work. However, they

rely on accessing and modifying model architecture and weights. Jeong et al. proposed BAND [30]

that coordinates multi-DNN inferences on heterogeneous mobile processors by partitioning the in-

put model into a set of subgraphs and scheduling subgraphs from multiple models in a holistic way.

Instead, SensiX++ takes a more practical and model-agnostic execution approach. SensiX++ treats

each model as a black box operating on top of its native runtime framework in a container. These

resource-aware containers are then dynamically scheduled with varying heuristics considering

system status and individual performance targets.

There has been considerable prior work in multi-tenant model serving at a cloud scale. For

instance, Velox [19] and Clipper [20] developed at UC Berkeley utilise a decoupled and layered

design with useful abstractions to interpose models on top of different runtime frameworks to

build low-latency serving systems. TensorFlow Serving [46] is from Google for serving Tensor-

Flow models, and SageMaker [8] from Amazon is a more general-purpose platform to prepare,

build, train, and deploy ML models. These vertically integrated frameworks essentially offer a con-

tainerised environment with micro-services to execute respective models. SensiX++ is inspired

by these systems, their model abstractions, and scheduling optimisations. However, in contrast to

these systems, SensiX++ supports a wide range of ML models and frameworks, resource-aware

scheduling, automated data transformation and pipeline, all at edge scale.

2.2 Automated MLOps on Edge Devices

MLOps are a relatively new area of data engineering, and so far, most of the attention is focused on

automated model training and primarily driven by the industry due to the challenges in running

ML systems in the real world [54, 60]. For instance, KubeFlow [5] operates on top of Kubernetes

and aims to simplify the deployment and orchestration of ML pipelines and workflows. Google’s

TensorFlow Extended [46] has similar objectives and integrates all components of an ML pipeline

to reduce time to production. Uber’s Michelangelo [7] is designed to build and deploy ML services

in an internal ML-as-a-service platform. There are several other initiatives such as BentoML [1]

and ElectrifAI [3] that automate and orchestrate ML workflows to serve in a production envi-

ronment. All of these platforms essentially aim to reduce the transition time from development

to production for ML systems, and in many ways, automate different workflows to simplify and

scale these systems. However, these systems operate in a cloud environment, and we are yet to

see their entrance to edge devices. SensiX++ is a first-of-its-kind system for bringing these MLOps

capabilities to edge devices. SensiX++ borrows many concepts from these systems; for instance,

automated data transformation, dynamic pipeline, or declarative abstraction to automate system-

wide orchestration while contextualising them with careful assessment of resource constraints and

performance targets.

3 SENSIX++: DESIGN PRINCIPLES

The primary objective of SensiX++ is to bring cloud-scale MLOps and multi-tenant model serving

to sensory edge devices. To this end, we have designed SensiX++ with the following four design

principles.

— Declarative abstraction for system orchestration: The diversity of ML models, under-

lying frameworks, and input variabilities, poses a significant challenge in building a multi-

tenant serving solution. We argue that the first step to addressing this challenge is to devise

a declarative abstraction that defines the model and explains its runtime requirement and

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:5

I/O dynamics. In SensiX++, we apply such declarative abstraction in a manifest script that

acts as the glue to bring various system components together with systematic orchestration.

— Resource-aware model isolation: Every ML model is unique with implicit assumptions on

data distributions and underlying library support. It is essential to keep these dependencies

intact while running this model in the real world to maintain accuracy and robustness. How-

ever, this maintenance becomes highly complicated in a multi-tenant setting unless we use

appropriate abstractions and isolation. In SensiX++, we apply model abstraction and process

isolation by running each model in a separate container that embodies all runtime dependen-

cies. We create these containers to run on different available processors to avoid resource

contention through careful and periodic assessment of the system load and demands.

— Externalisation of data operations: Most model-serving systems today assume that

model-specific input is available. This assumption demands significant manual operations

in a multi-tenant production environment and is particularly cumbersome for edge devices.

In SensiX++, we externalise all data operations pertained to a model, including data ac-

quisition, data transformation, and featurisation. Furthermore, we leverage our declarative

abstraction mechanism to automate and optimise these data operations and simultaneously

serve multiple models, reducing operation redundancy by sharing and removing manual

interventions.

— Fast and direct access for deployment and query: Today’s edge devices are essentially

all-streaming, dumb data producers. By embedding ML capability, we are slowly turning

them into intelligent perception units. However, they still rely on the remote clouds for

I/O and serving queries to applications. In SensiX++, we bring cloud-scale query service di-

rectly on the edge device to serve real-time queries and manage model deployment, thereby

offering benefits in speed and availability. SensiX++ maintains a set of micro-services to

operationalise these aspects and leverages its model-serving component for continuous

deployment without any downtime.

4 SENSIX++: OVERVIEW

We begin by offering an overview of SensiX++ and its various components. In Section 5, we cover

each of these components, underlying challenges, and technical details.

4.1 SensiX++ Components

Figure 1 shows the overall system architecture of SensiX++ composed of four main components:

— Data Coordinator: This component manages the sensor lifecycle and reads the sensor data

in a unified manner through its sensor controller. It uses a transformation coordinator to

transform sensor data into different formats meeting the requirements of different models

(Section 5.1).

— Adaptive Scheduler: This component is responsible for system-wide orchestration. This

component decides the execution schedule of multiple models balancing throughput and

latency and informs the data requirement of each model, e.g., sensor type, sampling rate,

and resolution, to the data coordinator (Section 5.2).

— Model Server: This component manages the execution of different models and creates

model-specific containers meeting all runtime requirements, i.e., framework and libraries.

These containers are then assigned to different processors (CPU, Mobile GPU, or TPUs)

by the adaptive scheduler. This component maintains a featurisation coordination con-

tainer that caches feature pipelines to serve multiple models requiring identical features

(Section 5.3).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:6 C. Min et al.

Fig. 1. System architecture (left) and an example operational flow for multiple acoustic models (right).

— Query Processor: This component is responsible for external interfaces. It maintains a

deployment coordinator to receive model packages and deploy them on SensiX++ using a

model server and adaptive scheduler. It also maintains a function coordinator that operates

on model outputs to produce synthesised query responses served through its query server.

Additionally, this component maintains small storage of model outputs to serve historical

queries (Section 5.4).

We illustrate the various MLOps performed by these components to serve multiple models in

Figure 1 (right) for a generic acoustic modelling task. Next, we discuss the declarative abstraction

mechanism of SensiX++ that acts as the glue to facilitate the interplay between these components.

4.2 Declarative Abstraction for System Orchestration

An important design consideration for SensiX++ is to support the efficient execution of ML mod-

els on edge devices irrespective of their model architectures, runtime inference frameworks, and

library dependencies. The challenge in achieving this vision is that an ML model is often released

as a black box and does not contain metadata regarding its input format (e.g., RGB or YUV im-

ages), library dependencies, featurisation pipelines, and so on. Gaining visibility in these aspects

of a model is critical to enable many of the system optimisations in SensiX++ and to achieve sig-

nificant gains in inference throughput and latency.

In SensiX++, we require model developers to specify metadata about their model through a

declarative abstraction mechanism using a model manifest file. Figure 2 shows the template of

a model manifest file. It contains information about the input requirements of the model (e.g.,

image resolution and encoding), the inference framework (e.g., TensorFlow 2.0, PyTorch), names

of the processors with which the model is compatible (e.g., CPU, GPU, TPU), and a unique global

identifier for the feature extraction pipeline (more details in Section 5.3). Further, the manifest file

also describes the library dependencies to run the model, a set of processor-specific weights of the

neural network model, and an inference script that interprets the numeric outputs of the model

(e.g., softmax probabilities) and converts them to human-readable classes. The developers can also

specify the latency constraint as a performance requirement (more details in Section 5.2).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:7

Fig. 2. Template of a model manifest file.

We expect that the proposed declarative abstraction will significantly lower application devel-

opers’ burden due to its simplicity. Also, it requires developers to provide less information than

today’s ML frameworks. The manifest file needs information only about the model (which is also

needed for today’s ML frameworks), but does not require the information to support different exe-

cution environments, e.g., handling input variabilities and addressing resource conflict from mul-

tiple models. In the coming sections, we will explain how this meta-information about the model

is exploited by various components in SensiX++ to design novel system-level optimisations.

5 SENSIX++: COMPONENT DESCRIPTION

5.1 Data Coordinator

The lowest layer of SensiX++ is the Data Coordinator, which interfaces with sensors connected to

a host device decoupling data production from data consumption (i.e., ML models) and represents

the first aspects of MLOps to enable the automatic deployment of diverse ML models.

At a conceptual level, the data coordinator deals with sensor capabilities on one side and model

requirements on the other. The sensor capabilities are intrinsic characteristics of the sensors. For

example, the capabilities of a camera include sampling rate, resolution, and colour space (e.g., RGB

or YUV). Since SensiX++ is designed to coordinate the execution of diverse models, not tailored to

any specific hardware, the data coordinator layer needs to support models with different sensor

data requirements. The model requirements define the expectations each model has on its input

data to complete the computation and produce a valid inference result. Any deviation from these

expectations will result in the failure of the model to execute or in severe degradation of its output

quality (e.g., recognition accuracy).

In the multi-tenant environment considered in this work, it is very likely to have a mismatch

between sensor capabilities and model requirements, especially when a set of models needs data

from a smaller set of sensors. The challenge for the data coordinator is to resolve the mismatch

between sensor capabilities and model requirements automatically and most efficiently, ensuring

that all the models running are fed with the appropriate sensor data without introducing excessive

latency and overhead for the host device. The mismatch resolution also needs to be transparent to

model developers who are unaware of the sensors available on the hosts where their models will

be deployed but provide the requirements via the manifest file.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:8 C. Min et al.

Fig. 3. Shared pipeline to serve four models.

Multi-model Sensor Data Transformation. Given the diverse and potentially incompatible

requirements of the different models, the sensor-model mismatch cannot be resolved only by

re-configuring the underlying sensors. Hence, SensiX++ proposes a two-stage approach where

the system first carefully configures the sensors to produce data as similar as possible to the model

requirements and, second, creates a shared pipeline to take care of the remaining transformations

for each model.

— Stage 1: During the first stage, the data coordinator uses the information stored in each

model’s manifest file to find a common sensor configuration valid for all models. For example,

if two vision models require images at 224 × 224 pixels and 416 × 416 pixels, respectively,

this layer configures the camera to output images at 416 × 416 resolution or bigger if that

resolution is not available. This avoids sub-optimal sensor configurations that might load

the host device unnecessarily given the current models running (e.g., capturing 4k images

when models only use 400 × 400 images).

— Stage 2: The second stage involves the creation of a pipeline to transform each sensor sample

and finally meet the models’ requirements. Instead of building an individual pipeline for

each model, the data coordinator creates a shared pipeline for all models. This pipeline is

manifested as a graph of transformations; Figure 3 depicts an example. In this example, four

models need to be fed with images from the camera at 10 Hz, but they all require a different

combination of resolution and colour space. By sharing the down-sampling and resizing

operations across all models, the system avoids their repetition in the case when there is an

individual pipeline for each model. We show in Section 6.3 how this results in significant

savings in terms of CPU and memory load.

When building the shared pipeline, the data coordinator places transformations that reduce the

number of samples or the size of each sample early in the pipeline (e.g., down-sampling or resiz-

ing) in order to reduce the operations performed at a later stage. Considering the example pipeline

in Figure 3, the down-sampling to 10 Hz is the first operation in order to discard images that are

not necessary as soon as possible, and hence save computation later in the pipeline. Similarly,

for microphone data, it might be beneficial to reduce the sampling rate sooner to perform later

operations on fewer data. Currently, we provide three transformations for cameras and three for

microphones, but the data coordinator can easily be extended to include additional ones. For im-

ages, SensiX++ can resize their resolution, modify their colour space, or reduce their sampling rate

(i.e., frames per second). For the microphone, the system can reduce the sampling rate, modify the

bit depth of each sample, and aggregate samples in different windows (e.g., 1 s, 2 s).

The components of the data coordinator that implement these functionalities are shown in

Figure 1. The Sensor Abstractions hide the details of each sensor and expose a uniform view to

the upper layers of the system. The Sensor Controller manages and coordinates multiple instances

of sensors, and the Transformation Coordinator selects the appropriate sensor configurations and

runs the shared pipeline. Collectively, the interplay between these components leads to completely

automated data management for serving models, which is an integrated part of MLOps.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:9

Fig. 4. Tradeoff between throughput (# of queries per second) and latency (sec).

In the next section, we present the Adaptive Scheduler layer, which sits on top of the Data

Coordinator and is responsible for optimising the models’ execution schedule.

5.2 Adaptive Scheduler

Due to the dynamic, unpredictable nature of deployment environments, it is infeasible for model-

serving systems to guarantee the exact performance that models have at development time. This

becomes more critical at the edge because it is almost infeasible to extend the resource availability

on the fly dynamically. Thus, we design SensiX++ (1) to allow models to specify their latency

requirements, rather than specifying an exact preferred throughput, and (2) to provide best-effort

performance while meeting those latency budgets.

For a given set of input models, a key to improving their inference throughput without modi-

fying models is to leverage batch processing. Batch processing enables fast and efficient compu-

tation by allowing the internal framework to exploit data-parallel processing, thereby increasing

the number of inferences that can be computed per unit of time. However, the downside of batch

processing is that it has a higher latency than doing a single inference. Figure 4 shows the rela-

tionships between the batch size, throughput, and latency for different models (details about the

models are in Table 1).2 Here, we define latency as the time from the data acquisition to the gener-

ation of a final inference output. Interestingly, the model throughput significantly increases even

with a small increase in the batch size. For example, MobileNet v2 can be executed 9.1 times per

second if the inference is continuously executed with a batch size of 1 (which is a common practice

for real-time applications). By increasing the batch size to 4, the throughput is expected to increase

to 26.7 inferences per second (about three times), but the maximum latency increases only from

0.11 to 0.26 seconds; here, the maximum latency is defined as the latency of the first sample in a

batch including the queueing time (i.e., the time it takes the data sample to stay in the queue).

Our explorative study in Figure 4 indicates an important principle of providing best-effort infer-

ence performance. When a model’s latency requirement is given in its manifest file, a straightfor-

ward method would be to profile the relationship between batch size and latency for the model,

and select the maximum batch size for which the expected latency is less than the model’s latency

requirement. However, such a profile-based static decision does not work well in multi-tenant envi-

ronments due to resource contention (especially, memory contention) between concurrent models.

Figure 5 shows latency profiles of MobileNet v2 and VGGFace when they are running alone (w/o

resource contention) and together with the other two vision models (w/ resource contention). The

contention increases the latency, thereby changing the optimal batch size. For example, the optimal

batch size of MobileNet v2 for the latency requirement of 300 ms changes from 4 (w/o contention)

to 2 (w/ contention).

2Note that we do not argue that the model throughput and latency generally have a linear relationship to the batch size.

The optimisation strategy of batch processing can differ depending on the accelerator architecture and framework imple-

mentation. We leave the modelling of the relationship between throughput/latency and batch size as future work.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:10 C. Min et al.

Table 1. List of Models

Task Model Framework

Vision

Image classification

MobileNet v2 [58] TensorFlow v2

MobileNet v2 (TPU) [58] Coral TPU

DenseNet 121 [27] TensorFlow v2

DenseNet 169 [27] TensorFlow v2

ResNet 50 v2 [26] TensorFlow v2

Inception v3 [61] TensorFlow v2

Object detection

Yolo v3 [57] TensorFlow v2

TinyYolo v3 [57] TensorFlow v2

MobileNet SSD v2 [58] Coral TPU

Face recognition VGGFace (Senet50) [18] TensorFlow v1

Audio

Emotion recognition Emotion [4] PyTorch

Sound classification YamNet [9] TensorFlow Lite

Keyword spotting Res-8 [2] Coral TPU

Fig. 5. Latency comparison w/ and w/o contention.

These results have two important implications. First, it is very costly to profile models by con-

sidering the contention effect because all possible combinations of concurrent models need to be

addressed. Second, although possible, the profile is still inaccurate due to resource contention with

other processes and daemons running on the device.

Adaptive Scheduling. To address the aforementioned challenge, we devise a lightweight, adap-

tive scheduler. The key idea is to monitor the runtime latency of each model and adjust the batch

size dynamically. More specifically, the scheduler employs the additive increase/decrease method,

inspired by TCP congestion control. Simply speaking, for each model, the scheduler monitors the

end-to-end runtime latency of every inference and increases the batch size if the runtime latency

is below the latency requirement. Similarly, it decreases the batch size if the runtime latency ex-

ceeds the requirement. Then, based on the selected batch size and runtime latency, the scheduler

estimates the expected throughput (as batch_size / runtime_latency) and passes it to the data co-

ordinator with the sampling rate of the corresponding sensor. Then, at runtime, the transformed

data in the data coordinator is stored and maintained in the queue of the adaptive scheduler. The

batch-aware dispatcher monitors the data queue and triggers the execution of the corresponding

model if the number of samples in the queue reaches the batch size. It discards the samples if their

queue time exceeds the latency requirement to avoid unnecessary processing.

Two practical issues in realising the scheduler are to determine (a) how often to change the

batch size and (b) when to stop increasing the batch size if it is expected to reach the optimal

size. First, the frequent change would enable the fast saturation to the optimal batch size, but also

incur additional costs (e.g., pipeline re-organisation in data coordinator) and make an inaccurate

decision due to the observation of small samples. Second, a naive implementation of the additive

increase/decrease method would repeat to decrease and increase the batch size if it exceeds the

optimal one, thereby wasting system resources.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:11

ALGORITHM 1: Adaptive Scheduler for Multi-tenant Model Serving

1: Initialize: latencyRecords ← {}
2: for each modelm do

3: if m is not in latencyRecords then

4: latencyRecords[m]← {batchSize : 1, latencies : {}}
5: end if

6: end for

7: while system is running do

8: for each modelm do

9: batchSize ← latencyRecords[m][′batchSize ′] + 1

10: runtimeLatency ←measureLatency (m,batchSize)
11: latencies ← дetLatencies (m,batchSize)
12: latencies .append (runtimeLatency)
13: avдRuntimeLatency ← calculateAveraдe (latencies)
14: if avдRuntimeLatency < LatencyReq then

15: latencyRecords[m][′batchSize ′]+ = 1

16: else if avдRuntimeLatency > LatencyReq then

17: latencyRecords[m][′batchSize ′] =max (0, latencyRecords[m][′batchSize ′] − 1)
18: end if

19: estimatedThrouдhput ← batchSize/avдRuntimeLatency
20: passToDataCoordinator (m, estimatedThrouдhput , samplinдRate)
21: end for

22: end while

To address these issues, the scheduler keeps track of the runtime latency and makes an informed

decision based on the recent trend, not from a single, last observation. More specifically, it main-

tains rl (m,b), where rl () returns the average runtime latency of recent inferences for given model

m, and batch size b. Then, to make a decision for the batch size of b, the scheduler compares the la-

tency requirement with the expected latency of the increased batch size rl (m,b+1), not the current

latency (rl (m,b)). This enables the scheduler to efficiently spot the optimal batch size while min-

imising the increasing/decreasing trials. Algorithm 1 shows the detailed algorithm of the adaptive

scheduling operation.

5.3 Model Server

In this section, we discuss how SensiX++ enables and optimises the deployment of multiple models

on edge devices.

System-aware model containers. As the ML ecosystem on edge devices is evolving, there is a

wide diversity of ML frameworks, feature extraction libraries, and hardware-specific models. For

example, ML models could be developed using different versions of TensorFlow, PyTorch, and

TensorFlow Lite, which may use feature extraction routines provided by OpenCV, Librosa, and

NumPy, and could be designed to execute on specialised hardware (e.g., TPUs). This challenge of

heterogeneity in the ML landscape is further compounded when multiple models run on the same

edge device.

To achieve process isolation and avoid library or framework conflicts between multiple models,

SensiX++ places each model in a separate Docker container. Although such container-based model

deployments have been proposed earlier [20], SensiX++’s key novelty is that the process of creating

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:12 C. Min et al.

ALGORITHM 2: Container Creator

1: for each modelm do

2: modelVariants ← дetModelVariants (m)
3: P ← дetAllAvailableProcessors ()
4: while true do

5: P_min ← selectProcessor (P)
6: modelVariant ← дetModelVariantAvailableOnProcessor (modelVariants, P_min)
7: if modelVariant is not None then

8: createContainer (modelVariant , P_min)
9: break

10: else

11: P ← P \ {P_min}
12: end if

13: end while

14: end for

ALGORITHM 3: Execution Coordinator

1: Initialize: workloadDictionary ← {}
2: for each processor p do

3: workloadDictionary[p]← дetInf erenceWorkload (p,k)
4: end for

docker containers and model execution pipelines is completely aware of the system state and is

designed to keep multi-tenancy at its core.

In a multi-tenant system, various models compete to access the underlying hardware resources.

For instance, due to the benefits associated with GPU acceleration, all model developers may in-

dividually want to run their inference pipeline on the GPU, by creating docker containers with

GPU support. This can, however, congest the GPU and require constant paging-in and paging-out

of parameters of different models from the GPU memory, leading to higher inference latency and

lower inference throughput for each model.

SensiX++ addresses this resource contention challenge through a simple yet effective solution.

In the model manifest file shown in Figure 2, model developers specify the hardware-specific vari-

ants of their models. For example, for an object detection task, a developer may provide a MobileNet

v2 model (that runs on a GPU), a MobileNet v2-TensorflowLite variant (that runs on a CPU), and

a MobileNet v2-TPU variant (that runs on a Coral Edge TPU). At the time of model deployment,

the Container Creator component first interacts with the Execution Coordinator and obtains the

current inference workload on each processor (e.g., CPU, GPU, Edge TPU) for the next k seconds,

as described in Algorithms 2 and 3, respectively. Thereafter, it selects the processor P_min with

the least inference workload as shown in Equation (1) and checks if the model weights provided

by the developer are compatible with P_min. If yes, SensiX++ creates a container, specific to that

processor (e.g., Edge TPU) by downloading the TPU-specific weights and inference pipeline pro-

vided by the developer as well as TPU-specific libraries. If the model developer has not provided a

model compatible with P_min, SensiX++ looks for the next available processor in the system, and

creates a model container specific to it.

selectProcessor (P) = arg min
p∈P

(workloadDictionary[p]). (1)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:13

In effect, our proposed approach of system-aware container creation provides an early-stage

load balancing and minimises resource contention in a multi-model system right before the models

are about to be deployed.

Feature Caching. Despite the recent emphasis on end-to-end deep learning on raw data, many

ML models still use dedicated feature extraction pipelines to generate features from the raw data

and feed them to the ML model, e.g., Mel-filterbank generation for audio signals and frequency-

domain feature generation for inertial sensor data. Interestingly, different models often use the

same feature extraction pipelines before feeding the data to task-specific classifiers. This presents a

clear system optimisation opportunity by caching the features generated by one model and reusing

them for other models, thereby saving redundant feature computations.

A major challenge here is that ML models do not yet have a standardised way of specifying

feature pipelines used by them. This implies that it is impossible to know if two models share

the same pipeline, without doing a thorough code analysis. As a solution, SensiX++ envisions and

proposes that feature pipelines are assigned a unique identifier based on the sequence of opera-

tions and parameters used in the pipeline. For example, the process of generating Mel-filterbank

features from raw audio data involves decomposing the audio signal in frames, applying Discrete

Fourier Transform on each frame to obtain its frequency-domain power spectrum, and re-scaling

the power spectrum to the Mel scale. This sequence of steps and the parameters used in each step

collectively constitute the feature extraction pipeline.

In SensiX++, model developers can specify a unique identifier for this feature extraction pipeline

in the model manifest file. This proposal has parallels with how neural network architectures are

assigned unique identifiers; for instance, MobileNet v2 is simply an identifier for the collection of

pre-defined computational layers with a fixed set of parameters (e.g., number and size of convo-

lutional kernels, stride length). By adding similar metadata for feature extraction pipelines, we

can facilitate the development of feature caching mechanisms across models that use the same

pipeline.

Implementation of Feature Caching. SensiX++ performs feature extraction and caching in a

dedicated docker container known as the Featurisation Coordinator as shown in Figure 1. When

an inference request for a model X is triggered, the Featurisation Coordinator receives sensor

data from the Execution Coordinator and executes the X ’s feature extraction pipeline on it. The

output features are then fed to X ’s container for computing the inferences. At the same time, if

another modelY registered on SensiX++ is using the same feature extraction pipeline, these output

features computed for X are cached in memory and passed on to Y when it needs to compute

an inference on the same data sample(s). This approach adds minimal overhead to the inference

pipeline associated with caching and retrieving the output features. However, this overhead is

negligible in comparison to the gains achieved by skipping the redundant feature extraction.

5.4 Query Processor

In this section, we discuss how SensiX++ interfaces with external applications, and handles their

queries.

Function Coordinator. SensiX++ allows the execution of functions that process the outcome

from model containers. These functions may serve several purposes, including generating

higher-order analytics and annotations for the sensor data using predictions from one or more

models or other functions. SensiX++ dedicates a container to facilitate the execution of such

post-processing functions applying microservice principles, i.e., a certain function is executed

when a particular request arrives. In our case, developers provide such functions during the

deployment phase using two files. A codelet file provides a number of executable functions that

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:14 C. Min et al.

Fig. 6. A code snippet for functions in the codelet.

use the outcome from one or more other functions and/or models. For each of these functions, a

functions file lists models and/or other functions, whose outputs are necessary for execution, as

well as the type of its outcome. Using this file, we follow an event-triggered approach where the

execution of a function is prompted by the completion of these entities in the functions file.

Query Server and Data Store. To serve query requests from users and applications, SensiX++

includes a microservice with a number of API endpoints. SensiX++ can serve a single response or

a stream. The APIs can be summarised below:

·/models: Get the list of models/

·/functions: Get the information about available post-processing functions/

·/inference/:type/:function_id: Get the outcome of a post-processing function with the

given query type (single or stream).

In order to serve historical queries, SensiX++ maintains a LevelDB data store [6], and the query

server leverages this data store to serve queries opportunistically. As the other system compo-

nents already maintain continuous and fresh pipeline execution from capturing sensor data to

post-processing functions and inserting the results into the database, the queries are responded

to from the data store. This way, even if there are multiple queries with the same request, the

response needs to be computed just once.

Deployment Coordinator. SensiX++ provides a document-based deployment mechanism to

model and application developers through an external POST API (/deploy). This API accepts an

archive of files to define the deployment, composed of a manifest, a codelet file to add functions to

the post-processing container as shown in Figure 6, and a functions file that is used to create a chain

of execution for post-processing functions. The manifest file lists a number of model manifests as

explained in Section 4.2. This file is dispatched to the scheduler to create model containers. On the

other hand, the codelet and functions files are forwarded to the post-processing container to add

the new capabilities and guide pipeline creation from the model output to the query response.

6 EVALUATION

In this section, we evaluate SensiX++ with various vision and audio recognition models. First, we

investigate the overall inference throughput achieved by SensiX++ across various multi-model

configurations. Second, we conduct several micro-benchmarks to quantify and isolate the bene-

fits of various components in SensiX++. Last, we report on an in-depth analysis of the costs and

overheads associated with SensiX++.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:15

Table 2. List of Workloads; the Parenthesised Number Represents the
Latency Requirement in Milliseconds

Id # Models Variation

W1 3 MobileNet v2, VGGFace, Yolo v3 Default

W2 3 DenseNet 121, TinyYolo v3, Emotion
Model

W3 3 MobileNet v2 (TPU), MobileNet SSD v2, Keyword

W4 1 MobileNet v2

of modelsW5 2 MobileNet v2, VGGFace

W6 4 MobileNet v2, VGGFace, Yolo v3, Emotion

W7 3 MobileNet v2 (500), VGGFace (500), Yolo v3 (500) Latency

requirementW8 3 MobileNet v2 (300), VGGFace (500), Yolo v3 (1000),

W9 3 DenseNet 169 (400), ResNet 50 v2 (400), Inception v3 (400)
Combination

W10 3 MobileNet v2 (500), DenseNet 121 (500), YamNet (500)

6.1 Experimental Setup

Models: We select a broad range of models mainly tailored for vision and audio recognition tasks,

covering diverse types of objectives, frameworks, processors, and model architectures. Table 1

summarises the models.

Edge accelerators: For the experiments, we use NVidia Jetson AGX3 (a GPU-powered edge board

released by NVidia) with Google Coral TPU accelerator.4 Jetson AGX hosts an 8-core Nvidia

Carmel Arm and a 512-core Nvidia VoltaTM GPU with 64 Tensor Cores able to deliver up to 32

TOPs. CPU and GPU share a common bank of 32 GB of LPDDR4 RAM. Google Coral accelerator

has a Google Edge TPU coprocessor supporting 4 TOPS (int8). As we are observing in today’s

smart cameras and speakers, we envision that such powerful edge accelerators will be naturally

equipped with sensory edge devices in order to provide on-device intelligence.

Sensors: We use a Wisenet XNV-6080R camera5 equipped with microphone to provide images

and audio samples.

6.2 Overall Throughput

We investigate the overall throughput of SensiX++ across various multi-tenant configurations.

Workloads: We compose eight workloads to benchmark, by selectively using models in Table 1.

Table 2 shows the details. We selectW1 (MobilNet v2, Yolo v3, VGG Face) as a default workload and

vary diverse aspects for the comprehensive analysis in terms of model types (W2,W3), the number

of concurrent models (W4,W5,W6), and latency requirements (W7,W8). By default, we set 300 ms

and 100 Hz to the latency requirements and the maximum inference rate for all models.

Baselines: We compare SensiX++ against two baselines:

— Vanilla Serving (Vanilla-serve): This baseline represents the current practice of ML model

execution on existing model-serving systems such as TensorFlow Serving6 and TorchServe.7

For each model, vanilla-serve constructs a model container that includes the end-to-end in-

ference pipeline in it (from data capture to model execution). As such, this baseline does

3https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
4https://coral.ai/products/accelerator/
5https://www.hanwhasecurity.com/xnv-6080r.html
6https://www.tensorflow.org/tfx/guide/serving
7https://pytorch.org/serve/

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://coral.ai/products/accelerator/
https://www.hanwhasecurity.com/xnv-6080r.html
https://www.tensorflow.org/tfx/guide/serving
https://pytorch.org/serve/

98:16 C. Min et al.

Fig. 7. Overall throughput across different multi-tenant configurations.

not share any data operations with other models. The model inference is triggered when

requested, i.e., whenever the image frame is generated, so Vanilla-serve does not perform

batch processing, i.e., the batch size = 1.

— Static-batch Serving (Batch-serve): This baseline is an optimised version of Vanilla-serve. It

builds over the Vanilla-serve baseline by adding batch processing to maximise the inference

throughput. However, it does not account for the resource contention issues in a multi-model

setting (as discussed in Section 5.2). When a model is registered, it profiles the end-to-end

latency with different batch sizes (as in Figure 4) and finds the maximum batch size that

meets the given latency requirement. Then, it continuously computes the inference with the

selected batch size regardless of the workload of other concurrent models. Note that, while

today’s ML frameworks support batch processing, application developers need to manually

specify the batch size to use.

Metrics: We measure the effectiveness of SensiX++ by measuring model inference throughput that

meets the latency requirement of the model as specified in the manifest file. More specifically, we

count the number of inferences per second, for which the end-to-end latency is below the latency

requirement of the model. We define end-to-end latency as the time from data acquisition to model

inference. We further measure the efficiency of SensiX++ by measuring the hit ratio, defined as a

ratio between (a) the number of data samples that succeed in meeting the latency requirement

and (b) the total number of data samples generated. A higher hit ratio indicates higher resource

efficiency, i.e., system resources are optimally used without waste.

6.2.1 Overall Performance. Figure 7 shows the model inference throughput of the workloads,

W1,W2,W3; the bars and line represent the throughput and hit ratio, respectively. The results show

that SensiX++ achieves higher throughput than Vanilla-serve by virtue of its batch processing

and operation sharing. More specifically, SensiX++ achieves up to 60% throughput increase in the

default workload, W 1. The throughput of MobileNet v2, Yolo v3, and VGGFace increases from

7.2, 5.7, and 4.0 to 14.4, 7.4, and 4.0, respectively. However, the throughput of Yolo v3 does not

increase meaningfully due to its heavy processing load; batch processing of Yolo v3 with the size

of 2 already exceeds the latency requirement, so SensiX++ does not increase its batch size.

We also compare the performance between SensiX++ and Batch-serve. Interestingly, both

schemes show comparable throughput across the models, but SensiX++ shows much higher hit

ratios, which implies the optimal use of resources. In Batch-serve, the batch size of a model is de-

termined independently to other models, thus the actual throughput the model achieves is lower

than the expected one from the selected batch size due to resource contention. Thus, inW1, the hit

ratio of VGGFace of Batch-serve decreases down to 0.43, meaning that more than half of the data

samples generated in a camera are dropped in the queue, or the output of the model inferences is

discarded due to the violation of the latency requirement. Unlike Batch-serve, SensiX++ achieves

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:17

Fig. 8. Effect of the number of models.

the hit ratio of nearly 1 even with unpredictable, fluctuating concurrent workloads. We investigate

the performance with different combinations of models in W2 and observe a similar trend to W1.

Similar toW1, relatively lightweight models (TinyYolo v3 and Emotion) largely benefit from batch

processing, e.g., throughput increase of SensiX++ by up to 2× and 50× compared with Vanilla-

serve, respectively; note that we scaled down the throughput of Emotion in Figure 7(b).

We further investigate the SensiX++ performance in the Coral TPU framework with W3. The

Coral TPU framework has different characteristics from other frameworks. First, it does not allow

concurrent access to Coral TPUs from different processors. Thus, we develop a unified container

that manages all the inferences of TPU models and adopts a round-robin scheduler for fairness.

Second, it does not support batch processing and corresponding internal optimisation in the frame-

work due to the limited memory (8 MB). However, when there are multiple models, the execution

of a batch of samples at once in the TPU framework also enables high throughput. This is because

Coral TPU can afford a very limited number of models in the memory (usually, only one vision

model) and needs to write model data every time when a new model is loaded. Thus, the first time

the model runs is always slower than the later times, and TPU models also show a similar pattern

as shown in Figure 4.

Figure 7(c) shows that SensiX++ outperforms the other baselines in the TPU framework as

well. SensiX++ achieves the throughput increase by up to around three times for all models. More

specifically, the throughput of MobileNet v2, MobileNet SSD v2, and Keyword increases up from

6.5 (Vanilla-serve) to 21.2, 16.5, and 18.7 (SensiX++), respectively. Interestingly, Batch-serve does

not increase the throughput of MobileNet v2 and MobileNet SSD. This is because Batch-serve de-

termines the batch size and sampling rate of each model under the assumption that the very model

is running alone. However, due to the lack of parallel execution capability of the TPU framework,

the queueing time of data samples becomes longer than expected in order to wait for other models

to be completed, and many of them are discarded due to the violation of the latency requirement.

On the contrary, Batch-serve increases the throughput of the Keyword model by having a rela-

tively higher sampling rate, i.e., less number of samples are discarded. However, we can observe

that a large portion of data samples is still discarded; the hit ratio of Keyword in Batch-serve

is 0.23.

6.2.2 Effect of Number of Models. Figure 8 shows the total throughput and average hit ratio

while varying the number of models. The results show that, across the different number of mod-

els, SensiX++ achieves higher throughput than Vanilla-serve while maintaining higher hit ratios

than Batch-serve. More specifically, the total throughput increases from 9.1, 13.7, 16.9, and 34.6

(Vanilla-serve) to 17.4, 24.5, 25.8, and 116.0 (SensiX++). In the heavy workload (W6), Batch-serve

shows comparable throughput, but a much lower hit ratio (0.4) than SensiX++ (0.8). We further

delve into a detailed analysis of multi-tenancy. When the number of models is one, specifically

W4, both Batch-serve and SensiX++ show higher throughput than Vanilla-serve, as both exploit

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:18 C. Min et al.

Fig. 9. SensiX++ with different latency requirements.

larger batch sizes. Interestingly, even with a single model, the hit ratio of Batch-serve is relatively

lower than SensiX++ because it uses a fixed batch size obtained during the offline phase, and the

actual model execution time can fluctuate at runtime. As the number of models escalates, fromW4

toW5,W1, andW6, resource contention among models intensifies, leading to a decrease in the hit

ratio across all baselines. Despite this, it is noteworthy that SensiX++ still maintains a reasonable

hit ratio of approximately 0.8, even when there are four models. As shown in Algorithm 1, this

is due to SensiX++’s dynamic batch size adjustment for each model based on its runtime execu-

tion time, reflecting the background workloads. However, the lack of this capability in Batch-serve

results in a significant decrease in the hit ratio, even though it demonstrates throughput similar

to SensiX++.

6.2.3 Performance with Different Latency Requirements. Figure 9 shows the behaviour of Sen-

siX++ for different latency requirements. The parenthesised numbers in the X -axis are the latency

requirement of each model and the numbers in the box represent the batch size that was selected

the most during runtime. For example, the most selected batch sizes of MobileNet v2, VGGFace,

and Yolo v3 inW1 are 3, 2, and 1, respectively. The results show that SensiX++ guarantees higher

throughput when the loose latency requirement is used. More specifically, when the latency re-

quirement is set to 500 ms inW7, the throughput of three models increases from 14.4, 7.4, and 4.0

(W1) to 44.3, 30.0, and 17.2 (W7). This is enabled by taking the longer batch size from the looser

latency requirement. For example, the throughput increase of Yolo v3 achieves up to four times

(W7) only at the latency expense of 200 ms.W8 represents the case when concurrent models have

different latency requirements, i.e., 300, 500, and 1000 ms. The results show that the adaptive sched-

uler of SensiX++ well distributes the resource use based on different requirements. Compared to

W1, the throughput increase is different depending on the increase of latency requirement of the

model. For example, the throughput increase of VGGFace is 22.6 when the latency requirement is

set from 300 ms (W1) to 500 ms (W8), but the increase of Yolo v3 is 40.8 when its latency increases

from 300 ms (W1) to 1,000 ms (W8). Interestingly, we observe the throughput of MobileNet v2 in-

creases even with the same latency requirement, e.g., 14.4 (W1) to 20.4 (W8). This is because other

models use fewer resources from the longer batch size in W8, and MobileNet v2 can be assigned

with more available resources.

6.2.4 Testing with More Workloads, Devices, and Baselines. More workloads: We further show

the applicability of SensiX++ to different workload settings and edge devices. First, we devise a

new workload, W9, with three models (DenseNet 169, ResNet 50 v2, Inception v3). Since these

models are relatively heavier than the models in the W1, i.e., longer execution time, we set the

latency requirement to 400 ms. Figure 10(a) shows the model inference throughput and hit ratios

of the workload, W9. Similar to the results in Section 6.2.1, SensiX++ shows higher throughput

than Vanilla-serve. More specifically, the total throughput of Vanilla-serve is 7.0 whereas the Sen-

siX++’s total throughput is 8.9 (27% increase). Interestingly, the results also show that SensiX++

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:19

Fig. 10. Testing with more workloads and devices.

outperforms Batch-serve in terms of both throughput and hit ratio. The total throughput and av-

erage ratio of Batch-serve are 8.0 and 0.5, whereas those of SensiX++ are 8.9 and 0.9.

More devices: Next, we investigate the performance of SensiX++ on Nvidia Jetson NX.8 Jetson

NX hosts a 6-core Nvidia Carmel Arm and 384 Nvidia CUDA cores and 48 Tensor cores. 8 GB

of LPDDR4x RAM is shared by CPU and GPU. Figure 10(b) shows the performance of SensiX++

on Jetson NX with W10 (MobileNet v2, DenseNet 121, YamNet). Since Jetson NX is less powerful

than Jetson AGX, we set the latency requirement of these models to 500 ms. Even on a differ-

ent edge device, Jetson NX, we can observe that SensiX++ provides a similar performance trend

to the results on Jetson AGX, which shows the generalisability of SensiX++. More specifically,

SensiX++ increases the total throughput from 7.4 (Vanilla-serve) to 9.7. Similarly, SensiX++ shows

comparable throughput to Batch-serve, but it increases the average hit ratio from 0.52 (Batch-serve)

to 0.74.

More baselines: Here, we extend the system performance comparison to include two addi-

tional baselines. As previously mentioned, Batch-serve is an optimised version of Vanilla-serve,

designed to find the maximum batch size that meets the latency requirements for a given device.

However, Batch-serve is not yet supported by current ML frameworks. In the absence of runtime

device information during application development, developers must manually specify the

batch size based on their own target environment. Consequently, the batch size remains static,

irrespective of the platform the model is deployed on. To quantify the impact of this practice and

highlight the system-driven adaptation, we incorporated two more baselines–Batch-serve(AGX)

and Batch-serve(Nano)–into the experiment withW10 performed on Jetson NX. Batch-serve(AGX)

and Batch-serve(Nano) utilise profiles obtained from Jetson AGX and Nano,9 respectively.

These profiles represent scenarios where developers target Jetson AGX and Jetson Nano, but

deploy models on Jetson NX. Table 3 shows the total throughput and average hit ratio of three

models W10 (MobileNet v2, Dense 121, YamNet). When the target platform is Jetson AGX but

the deployed platform is Jetson NX, the average hit ratio drops from 0.52 (Batch-serve) to 0.38

(Batch-serve(AGX)), due to increased resource contention among models. This happens because

Jetson AGX is more powerful than Jetson NX and consequently larger batch sizes are used for all

three models. Interestingly, the total throughput of Batch-serve(AGX) is similar to Batch-serve,

as both fully utilise CPU resources. Contrarily, Batch-serve(Nano) reduces the total throughput

drastically from 11.63 (Batch-serve) to 5.72 (Batch-serve(Nano)), despite an increased average

hit ratio. This is due to the fact that Jetson Nano is less powerful than Jetson NX, leading

Batch-serve(Nano) to use smaller batch sizes than Batch-serve. While Batch-serve outperforms

both Batch-serve(AGX) and Batch-serve(NX), its performance lags behind that of SensiX++ due

to its inability to holistically schedule all concurrent models.

8https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
9https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/

98:20 C. Min et al.

Table 3. Performance Comparison with More Baselines

Metrics Batch-serve Batch-serve(AGX) Batch-serve(Nano) SensiX++

Total throughput (hits per second) 11.63 11.45 5.72 9.69

Average hit ratio 0.52 0.38 0.88 0.74

Fig. 11. Average CPU utilisation
for shared and individual sensor
pipelines.

Fig. 12. Memory utilisation for
shared and individual sensor
pipelines.

Fig. 13. Latency reduction due
to feature caching.

6.3 Micro-Benchmarks

We conduct micro-benchmarks to quantify the benefits of SensiX++ components. First, we further

break down the performance of SensiX++, mainly focusing on the benefits of sharing in two com-

ponents: (a) a shared transformation pipeline in the data coordinator and (b) feature caching in

the model server. Second, we investigate the performance gain from the system-aware container

creation.

6.3.1 Benefits of Shared Transformation Pipeline. To evaluate the benefit of sharing the trans-

formation pipeline across multiple models, we created 16 pipelines inspired by the requirements

of the models listed in Table 1. We deployed these pipelines first using the sharing approach

proposed by SensiX++ (Section 5.1) and then as individual pipelines. The latter represents a

scenario where each model is deployed individually without awareness of other models running

on the system and their requirements, resulting in repetitions in the transformations they perform

on the sensor data. Figures 11 and 12 report the CPU utilisation and resident set size utilisation of

the data coordinator, respectively. We notice that as the number of pipelines increases, the benefit

of sharing operations results in significant resource savings. The individual pipelines use more

resources proportional to the number of pipelines deployed, while the sharing approach scales

more slowly with the number of pipelines because operations within the pipelines are executed

only once. Already with four pipelines deployed, we notice significant benefits in the sharing

approach, which saves 35% of CPU and 80% of memory compared to the individual pipelines.

6.3.2 Latency Reduction using Feature Caching. To demonstrate the effect of SensiX++’s Feature

Caching component, we evaluate it on two workloads:

— A set of three audio recognition models, namely, EmotionNet for emotion recognition, Yam-

Net for acoustic event detection, and Res-8 for Keyword Detection. While these models have

different inference tasks, they share the same feature extraction pipeline, which involves

computation of Mel-filterbank features from raw audio.

— A set of three visual recognition models, namely, MobileNetV2, DenseNet121, and YoloV3.

For these models, we consider image translation as the shared featurisation operation. Image

Translation is a popular mechanism to reduce domain shift (i.e., the divergence between

training and test data distributions) [40]. It involves passing the test image to a pre-trained

translation model (e.g., Pix2Pix [29]) to obtain a translated image, which is closer to the

training data distribution.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:21

Fig. 14. Our system-aware container creation provides a significant reduction in the wall clock time for
computing inferences for multiple models.

Figure 13 illustrates the latency reduction achieved by feature caching as compared to the naïve

baseline when each model independently performs the featurisation operations. For the vision

models, we obtain a reduction of 48% in the end-to-end to inference latency. This is primarily

because the image translation operation is expensive to perform; hence, by doing it once and

caching its results for other models results in significant latency improvements. For the audio

models, we observe a 5% latency reduction by sharing the Mel-filterbank generation pipeline across

models. As this operation is much cheaper than image translation, the latency reduction is smaller.

In summary, our results show that by requiring the model developers to provide a trivial piece of

metadata about their feature extraction pipelines, SensiX++ can offer the ability of feature caching

and provide clear latency improvements.

6.3.3 Performance Gains from System-Aware Container Creation. We now compare our ap-

proach to the system-aware creation of model containers against the existing paradigm where

model containers are unaware of the system state. Four visual recognition models are used for

this experiment, namely, Dense121 (CPU or GPU), MobileNetV2 (CPU, GPU, or Coral TPU),

TinyYoloV3 (CPU), and YoloV3 (CPU or GPU). The values in the parentheses denote the processors

on which a model can be executed. Recall that the processor-specific model weights are specified

in the manifest file.

In Figure 14, we show three scenarios for deploying these models. In each scenario, we take a

deployment order, e.g., {D,Y,M,T} indicates that D is first deployed on the system followed by Y,

M, and T. When a model is about to be deployed, we check the current resource utilisation of each

processor and assign the model to a processor based on its availability and compatibility with the

model. For {D,Y,M,T}, our algorithm assigns D to the GPU, Y to the CPU, M to the TPU, and T to

the CPU. In the absence of this system-aware strategy, a baseline strategy would have assigned

D, Y, and M to the GPU considering the benefits of GPU acceleration, which would have led to

resource contention on the GPU in our multi-model scenario and increased the wall clock time

of computing inferences for all the models. Our proposed strategy outperforms the baseline by

providing 34–63% reduction in wall clock time for computing inferences on all the models.

6.4 System Overhead Analysis

We conduct an in-depth cost analysis to better understand the runtime behaviour of SensiX++.

To bring MLOps and multi-tenant model serving, besides the operations originally required for

the model inference, SensiX++ additionally performs the following operations: (a) the container

creation when a model is added, (b) the data transformation, (c) adaptive scheduling at runtime,

and (d) applying post-processing functions and interfacing with a data store in query serving

phase. Since the cost of adaptive scheduling is negligible (<1 ms), we focus on the other costs

here.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

98:22 C. Min et al.

Fig. 15. Time taken for creating model containers.

Table 4. Average Latency of Data
Coordinator Operations

Operation Latency (ms)

Abstractions only 0.51 (0.11)

Vision

Sampling rate 0.025 (0.053)

Resolution 1.29 (0.16)

Colour space 0.30 (0.082)

Audio

Aggregation window 0.024 (0.028)

Bit depth 7.44 (0.25)

Sampling rate 9.42 (0.21)

Overhead of container creation: Figure 15 shows the time breakdown of various steps involved

in creating the docker-based execution pipeline for six different ML models. We observe that the

end-to-end deployment of the models in SensiX++ takes less than 30 seconds. The bulk of this

time is spent in downloading the model weights over the network and installing model-specific

library dependencies (e.g., for feature extraction) as specified in the model manifest file. SensiX++’s

overhead, which includes integrating the Data coordinator and Adaptive scheduler with the model’s

inference pipeline and exposing the model interface as a REST API, is minimal and ranges between

4 and 7 seconds.

Sensor abstractions and transformations latency: The abstractions and transformations pro-

vided by the data coordinator are intended to offer a uniform view of heterogeneous hardware and

simplify the deployment of ML models that have not been specifically developed for the sensors in

use. As such, these operations should contribute minimally to the overhead of the system and in-

troduce minimal latency in the dispatch of the sensor data to the other components in the system.

Table 4 reports the latency of the individual operations performed by the data coordinator.10 We

notice that the latency introduced by the abstractions is limited since this is a thin layer over the

sensor drivers that transfer data to other components in the system. Similarly, the transformations

that reduce the frames per second or aggregate audio samples in different windows do not apply

any actual transformation to the data but drop unnecessary frames or aggregate audio samples,

hence they introduce very short latency. The other data transformations instead take more time

to compute (in particular, for acoustic transformations) since they perform modifications to actual

samples before dispatching them.

Query serving latency: Figure 16 shows the latency associated with query serving for four differ-

ent tasks accumulated by three different factors: executing the post-processing function, writing

the function output to data store, and reading from the data store to serve a query. Across this

variety of tasks, SensiX++ manages to respond to queries within roughly 10 ms.

10We used 640 × 480 images and audio samples of 1 second at 32 kHz sampling rate.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:23

Fig. 16. Latency associated with query serving.

Power cost for model inference serving: We investigate the power cost required for serving

model inferences, using software-based power consumption modelling11 provided by Nvidia. Inter-

estingly, for the same workload, the difference in the total energy consumption between SensiX++

and the baselines is marginal, showing no statistical significance. For example, Jetson AGX con-

sumes around 13 J/s on SensiX++, Vanilla-serve, and Batch-serve with the MAXN power mode; the

difference was around 0.15 J/s. This is mainly because idle power of Jetson AGX (i.e., the baseline

power without any workload) is already high. In addition, the MAXN power mode disables the dy-

namic voltage and frequency scaling (DVFS), i.e., using static voltage and frequency of each

processor, which makes less variations of energy cost depending on the runtime workload. For

example, when we break down the energy consumption, 13 J/s, the baseline energy is 8.8 J/s but

the additional energy consumed by ML execution is 4.2 J/s; the additional energy cost on Vanilla-

serve and Batch-serve is around 4.05 J/s and 4.3 J/s, respectively. We conjecture that this is mainly

because these devices are not designed to run on batteries and thus adopt less power-optimised

processors. We leave the investigation of the power consumption of SensiX++ on battery-powered

devices as future work.

6.5 Summary of Results

— SensiX++ provides much higher throughput than today’s vanilla serving, e.g., achieving up

to 60% throughput increase when three models (MobileNet v2, Yolo v3, and VGGFace) are

concurrently running. SensiX++ also uses computing resources more optimistically than

static batch processing. Both of them show comparable throughput, but SensiX++ shows a

38% increase in hit ratio for the same workload.

— Across the different number of models, SensiX++ achieves higher throughput than vanilla

serving while maintaining higher hit ratios than static batch serving, e.g., two to three times

increase in inference throughput compared to vanilla serving.

— With different latency requirements of ML models, SensiX++ well distributes the resource

use based on different requirements.

— Through multiple micro-benchmarks, we show that SensiX++ achieves the performance gain

by sharing redundant data operations and system-aware container creation.

— We investigate the overhead of the SensiX++ operations in diverse aspects and show that

SensiX++ has several benefits with low overhead.

7 OUTLOOK

We have presented SensiX++, a multi-tenant runtime for model execution with integrated MLOps

on edge devices. Thanks to the modular design, SensiX++ enables great flexibility in the deploy-

ment of multiple models efficiently with fine-grained control on edge devices. It minimises data

11https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.html#page/Tegra%20\Linux%20Driver%20Package%

20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.html#page/Tegra%20\Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA

98:24 C. Min et al.

operation redundancy, manages data and device heterogeneity, reduces resource contention, and

enables automatic MLOps. Our benchmarks on an edge device highlight the simplicity of deploying

and coordinating diverse vision and acoustics models and the benefits that arise from the automa-

tion offered by its key components (i.e., model server, adaptive scheduler, and data coordinator).

This is a significant step forward compared to current edge MLOps, which do not consider multi-

tenant scenarios or treat each model as an independent silo without benefiting from system-aware

sharing across models and holistic coordination as offered by SensiX++.

In the current implementation, SensiX++ takes a container as a basic unit of the model execution,

i.e., running one model on a single container. It guarantees independence and portability of ML

execution environments, but can also incur the waste of storage space, especially when different

models share common frameworks or runtime dependencies. We expect that this problem can

be addressed by the re-design of the docker container architecture, e.g., allowing the modular

execution of the docker container and adopting efficient communication across containers.

In this article, we mainly focus on a single sensory device serving multi-tenant models. However,

we envision that ML collaboration between nearby or remote sensory devices will be prevalent to

support a higher quality of service and seamless operations, but it will be more challenging to be

realised, e.g., dynamic discovery of available devices, holistic orchestration of distributed resources,

and communication fault-tolerant scheduling. We plan to extend SensiX++ to support MLOps to

multiple, distributed edges by addressing the aforementioned challenges.

REFERENCES

[1] 2021. BentoML. (2021). Retrieved August 8, 2023 from https://www.bentoml.ai

[2] 2021. Coral Keyphrase Detector. (2021). Retrieved August 8, 2023 from https://github.com/google-coral/

project-keyword-spotter

[3] 2021. ElectrifAI. (2021). Retrieved August 8, 2023 from https://electrifai.net

[4] 2021. Emotion Classification. (2021). Retrieved August 8, 2023 from https://github.com/Data-Science-kosta/

Speech-Emotion-Classification-with-PyTorch/

[5] 2021. KubeFlow. (2021). Retrieved August 8, 2023 from https://www.kubeflow.org

[6] 2021. LevelDB. (2021). Retrieved August 8, 2023 from https://github.com/google/leveldb

[7] 2021. Michelangelo. (2021). Retrieved August 8, 2023 from https://eng.uber.com/michelangelo-machine-learning-

platform/

[8] 2021. SageMaker. (2021). Retrieved August 8, 2023 from https://aws.amazon.com/sagemaker/

[9] 2021. YAMNet. (2021). Retrieved August 8, 2023 from https://github.com/tensorflow/models/tree/master/research/

audioset/yamnet

[10] Utku Günay Acer, Marc van den Broeck, Chulhong Min, Mallesham Dasari, and Fahim Kawsar. 2022. The city as a

personal assistant: Turning urban landmarks into conversational agents for serving hyper local information. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2 (July 2022), Article 40, 31 pages. https://doi.org/10.1145/3534573

[11] Mattia Antonini, Miguel Pincheira, Massimo Vecchio, and Fabio Antonelli. 2022. Tiny-MLOps: A framework for or-

chestrating ML applications at the far edge of IoT systems. In Proceedings of the 2022 IEEE International Conference on

Evolving and Adaptive Intelligent Systems (EAIS’22). 1–8. https://doi.org/10.1109/EAIS51927.2022.9787703

[12] Mattia Antonini, Tran Huy Vu, Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019. Re-

source characterisation of personal-scale sensing models on edge accelerators. In Proceedings of the 1st International

Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT’19). ACM,

New York, NY, 49–55. https://doi.org/10.1145/3363347.3363363

[13] Tayebeh Bahreini and Daniel Grosu. 2017. Efficient placement of multi-component applications in edge computing

systems. In Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing (SEC’17). Association for Computing

Machinery, New York, NY, Article 5, 11 pages. https://doi.org/10.1145/3132211.3134454

[14] Abu Bakar, Tousif Rahman, Alessandro Montanari, Jie Lei, Rishad Shafik, and Fahim Kawsar. 2022. Logic-based

intelligence for batteryless sensors. In Proceedings of the 23rd Annual International Workshop on Mobile Comput-

ing Systems and Applications (HotMobile’22). Association for Computing Machinery, New York, NY, 22–28. https:

//doi.org/10.1145/3508396.3512870

[15] Abu Bakar, Tousif Rahman, Rishad Shafik, Fahim Kawsar, and Alessandro Montanari. 2022. Adaptive intelligence for

batteryless sensors using software-accelerated tsetlin machines. In Proceedings of the 20th Conference on Embedded

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://www.bentoml.ai
https://github.com/google-coral/project-keyword-spotter
https://electrifai.net
https://github.com/Data-Science-kosta/Speech-Emotion-Classification-with-PyTorch/
https://www.kubeflow.org
https://github.com/google/leveldb
https://eng.uber.com/michelangelo-machine-learning-platform/
https://aws.amazon.com/sagemaker/
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://doi.org/10.1145/3534573
https://doi.org/10.1109/EAIS51927.2022.9787703
https://doi.org/10.1145/3363347.3363363
https://doi.org/10.1145/3132211.3134454
https://doi.org/10.1145/3508396.3512870

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:25

Networked Sensor Systems (SenSys’22). Association for Computing Machinery, New York, NY. https://doi.org/10.1145/

3560905.3568512

[16] Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and separation of deep learning layers for constrained

resource inference on wearables. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-

ROM (SenSys’16). Association for Computing Machinery, New York, NY, 176–189. https://doi.org/10.1145/2994551.

2994564

[17] Henrik Blunck, Niels Olof Bouvin, Tobias Franke, Kaj Grønbæk, Mikkel B. Kjaergaard, Paul Lukowicz, and Markus

Wüstenberg. 2013. On heterogeneity in mobile sensing applications aiming at representative data collection. In Pro-

ceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication (UbiComp’13 Adjunct).

Association for Computing Machinery, New York, NY, 1087–1098. https://doi.org/10.1145/2494091.2499576

[18] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. 2018. VGGFace2: A dataset for recognising

faces across pose and age. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face Gesture

Recognition (FG’18). 67–74. https://doi.org/10.1109/FG.2018.00020

[19] Daniel Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li, Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and

Michael I. Jordan. 2015. The missing piece in complex analytics: Low latency, scalable model management and serving

with velox. In Proceedings of the 7th Biennial Conference on Innovative Data Systems Research (CIDR’15). www.cidrdb.

org. http://cidrdb.org/cidr2015/Papers/CIDR15_Paper19u.pdf

[20] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A

low-latency online prediction serving system. In Proceedings of the 14th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI’17). USENIX Association, Boston, MA, 613–627. https://www.usenix.org/conference/

nsdi17/technical-sessions/presentation/crankshaw

[21] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-aware multi-tenant on-device deep learning for con-

tinuous mobile vision. In Proceedings of the 24th Annual International Conference on Mobile Computing and Network-

ing (MobiCom’18). Association for Computing Machinery, New York, NY, 115–127. https://doi.org/10.1145/3241539.

3241559

[22] Petko Georgiev, Nicholas D. Lane, Kiran K. Rachuri, and Cecilia Mascolo. 2016. LEO: Scheduling sensor inference

algorithms across heterogeneous mobile processors and network resources. In Proceedings of the 22nd Annual Inter-

national Conference on Mobile Computing and Networking (MobiCom’16). Association for Computing Machinery, New

York, NY, 320–333. https://doi.org/10.1145/2973750.2973777

[23] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Mahadev Satyanarayanan. 2014.

Towards wearable cognitive assistance. In Proceedings of the 12th Annual International Conference on Mobile Systems,

Applications, and Services (MobiSys’14). ACM, New York, NY, 68–81. https://doi.org/10.1145/2594368.2594383

[24] Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with pruning,

trained quantization and Huffman coding. https://arxiv.org/abs/1510.00149

[25] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Krishnamurthy. 2016.

MCDNN: An approximation-based execution framework for deep stream processing under resource constraints. In

Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys’16).

Association for Computing Machinery, New York, NY, 123–136. https://doi.org/10.1145/2906388.2906396

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep Residual Networks. (2016).

https://doi.org/10.48550/ARXIV.1603.05027

[27] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2018. Densely connected convolutional

networks. https://arxiv.org/abs/1608.06993

[28] Shawn Hymel, Colby Banbury, Daniel Situnayake, Alex Elium, Carl Ward, Mat Kelcey, Mathijs Baaijens, Mateusz

Majchrzycki, Jenny Plunkett, David Tischler, Alessandro Grande, Louis Moreau, Dmitry Maslov, Artie Beavis, Jan

Jongboom, and Vijay Janapa Reddi. 2022. Edge Impulse: An MLOps Platform for Tiny Machine Learning. Retrieved

from https://doi.org/10.48550/ARXIV.2212.03332

[29] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-image translation with conditional

adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17).

[30] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin Jeong, Youngki Lee, and Byung-Gon Chun.

2022. Band: Coordinated multi-DNN inference on heterogeneous mobile processors. In Proceedings of the 20th An-

nual International Conference on Mobile Systems, Applications and Services (MobiSys’22). Association for Computing

Machinery, New York, NY, 235–247. https://doi.org/10.1145/3498361.3538948

[31] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017. Neu-

rosurgeon: Collaborative intelligence between the cloud and mobile edge. SIGARCH Compututer Architecture. News

45, 1 (April 2017), 615–629. https://doi.org/10.1145/3093337.3037698

[32] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Alesandro Montanari. 2018. Earables for personal-scale behavior

analytics. IEEE Pervasive Computing 17, 3 (July 2018), 83–89. https://doi.org/10.1109/MPRV.2018.03367740

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://doi.org/10.1145/3560905.3568512
https://doi.org/10.1145/2994551.2994564
https://doi.org/10.1145/2494091.2499576
https://doi.org/10.1109/FG.2018.00020
www.cidrdb.org
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper19u.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/2973750.2973777
https://doi.org/10.1145/2594368.2594383
https://arxiv.org/abs/1510.00149
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.48550/ARXIV.1603.05027
https://arxiv.org/abs/1608.06993
https://doi.org/10.48550/ARXIV.2212.03332
https://doi.org/10.1145/3498361.3538948
https://doi.org/10.1145/3093337.3037698
https://doi.org/10.1109/MPRV.2018.03367740

98:26 C. Min et al.

[33] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay. 2018. Edge-host partitioning of deep

neural networks with feature space encoding for resource-constrained internet-of-things platforms. In Proceedings

of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS’18). 1–6. https:

//doi.org/10.1109/AVSS.2018.8639121

[34] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar.

2016. DeepX: A software accelerator for low-power deep learning inference on mobile devices. In Proceedings of the

15th International Conference on Information Processing in Sensor Networks (IPSN’16). IEEE Press, Article 23, 12 pages.

[35] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell. 2010.

A survey of mobile phone sensing. IEEE Communications Magazine 48, 9 (September 2010), 140–150. https://doi.org/

10.1109/MCOM.2010.5560598

[36] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning filters for efficient convNets.

https://arxiv.org/abs/1608.08710

[37] Dawei Liang and Edison Thomaz. 2019. Audio-based activities of daily living (ADL) recognition with large-scale acous-

tic embeddings from online videos. Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies

3, 1 (March 2019), Article 17, 18 pages. https://doi.org/10.1145/3314404

[38] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018. On-demand deep model compres-

sion for mobile devices: A usage-driven model selection framework. In Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys’18). Association for Computing Machinery, New

York, NY, 389–400. https://doi.org/10.1145/3210240.3210337

[39] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018. Rethinking the value of network

pruning. https://arxiv.org/abs/1810.05270

[40] Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D. Lane. 2019. Mic2Mic: Using cycle-

consistent generative adversarial networks to overcome microphone variability in speech systems. In Proceedings of

the 18th International Conference on Information Processing in Sensor Networks (IPSN’19). Association for Computing

Machinery, New York, NY, 169–180. https://doi.org/10.1145/3302506.3310398

[41] Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya, Aidan Boran, Claudio Forlivesi, and Fahim Kawsar. 2017. Deep-

eye: Resource efficient local execution of multiple deep vision models using wearable commodity hardware. In Pro-

ceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. 68–81.

[42] Akhil Mathur, Tianlin Zhang, Sourav Bhattacharya, Petar Veličković, Leonid Joffe, Nicholas D. Lane, Fahim Kawsar,

and Pietro Lió. 2018. Using deep data augmentation training to address software and hardware heterogeneities in

wearable and smartphone sensing devices. In Proceedings of the 17th ACM/IEEE International Conference on Information

Processing in Sensor Networks. IEEE Press, 200–211.

[43] Chulhong Min, Akhil Mathur, Alessandro Montanari, and Fahim Kawsar. 2019. An early characterisation of wearing

variability on motion signals for wearables. In Proceedings of the 23rd International Symposium on Wearable Computers

(ISWC’19). ACM, New York, NY, 166–168. https://doi.org/10.1145/3341163.3347716

[44] Chulhong Min, Akhil Mathur, Alessandro Montanari, and Fahim Kawsar. 2022. SensiX: A system for best-effort infer-

ence of machine learning models in multi-device environments. IEEE Transactions on Mobile Computing 22, 9 (2022),

5525–5538. https://doi.org/10.1109/TMC.2022.3173914

[45] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019. A closer look at quality-aware run-

time assessment of sensing models in multi-device environments. In Proceedings of the 17th Conference on Embedded

Networked Sensor Systems (SenSys’19). ACM, New York, NY, 271–284. https://doi.org/10.1145/3356250.3360043

[46] Akshay Naresh Modi, Chiu Yuen Koo, Chuan Yu Foo, Clemens Mewald, Denis M. Baylor, Eric Breck, Heng-Tze Cheng,

Jarek Wilkiewicz, Levent Koc, Lukasz Lew, Martin A. Zinkevich, Martin Wicke, Mustafa Ispir, Neoklis Polyzotis, Noah

Fiedel, Salem Elie Haykal, Steven Whang, Sudip Roy, Sukriti Ramesh, Vihan Jain, Xin Zhang, and Zakaria Haque. 2017.

TFX: A TensorFlow-based production-scale machine learning platform. In Proceedings of KDD 2017.

[47] Alessandro Montanari, Mohammed Alloulah, and Fahim Kawsar. 2019. Degradable inference for energy autonomous

vision applications. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous

Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers. 592–597.

[48] Alessandro Montanari, Fredrika Kringberg, Alice Valentini, Cecilia Mascolo, and Amanda Prorok. 2018. Surveying

areas in developing regions through context aware drone mobility. In Proceedings of the 4th ACM Workshop on Micro

Aerial Vehicle Networks, Systems, and Applications. 27–32.

[49] Alessandro Montanari, Afra Mashhadi, Akhil Mathur, and Fahim Kawsar. 2016. Understanding the privacy design

space for personal connected objects. In Proceedings of the 30th International BCS Human Computer Interaction Con-

ference 30. 1–13.

[50] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah, Lorena Qendro, and Fahim Kawsar.

2020. ePerceptive: Energy reactive embedded intelligence for batteryless sensors. In Proceedings of the 18th Conference

on Embedded Networked Sensor Systems (SenSys’20). Association for Computing Machinery, New York, NY, 382–394.

https://doi.org/10.1145/3384419.3430782

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/MCOM.2010.5560598
https://arxiv.org/abs/1608.08710
https://doi.org/10.1145/3314404
https://doi.org/10.1145/3210240.3210337
https://arxiv.org/abs/1810.05270
https://doi.org/10.1145/3302506.3310398
https://doi.org/10.1145/3341163.3347716
https://doi.org/10.1109/TMC.2022.3173914
https://doi.org/10.1145/3356250.3360043
https://doi.org/10.1145/3384419.3430782

SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory Edge Devices 98:27

[51] Arthur Moss, Hyunjong Lee, Lei Xun, Chulhong Min, Fahim Kawsar, and Alessandro Montanari. 2022. Ultra-low

power DNN accelerators for IoT: Resource characterization of the MAX78000. In Proceedings of the 20th ACM Confer-

ence on Embedded Networked Sensor Systems (SenSys’22), 934–940.

[52] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia. 2018. Accelerating deep learning

workloads through efficient multi-model execution. In NeurIPS Workshop on Systems for Machine Learning. 20.

[53] Francisco Javier Ordóñez and Daniel Roggen. 2016. Deep convolutional and LSTM recurrent neural networks for

multimodal wearable activity recognition. Sensors 16, 1 (2016). https://doi.org/10.3390/s16010115

[54] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. 2020. Challenges in deploying machine learning: A survey

of case studies. CoRR abs/2011.09926 (2020). arXiv:2011.09926. https://arxiv.org/abs/2011.09926

[55] Philipp Raith and Schahram Dustdar. 2021. Edge intelligence as a service. In Proceedings of the 2021 IEEE International

Conference on Services Computing (SCC’21). 252–262. https://doi.org/10.1109/SCC53864.2021.00038

[56] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel

Hernández-Lobato, Gu-Yeon Wei, and David Brooks. 2016. Minerva: Enabling low-power, highly-accurate deep neu-

ral network accelerators. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA’16). IEEE

Press, 267–278. https://doi.org/10.1109/ISCA.2016.32

[57] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An incremental improvement. https://arxiv.org/abs/1804.02767

[58] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2019. MobileNetV2: In-

verted residuals and linear bottlenecks. https://arxiv.org/abs/1801.04381

[59] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39. https://doi.org/10.

1109/MC.2017.9

[60] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael

Young, Jean-Francois Crespo, and Dan Dennison. 2015. Hidden technical debt in machine learning systems. In Pro-

ceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (NIPS’15). MIT Press,

Cambridge, MA, 2503–2511.

[61] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. 2015. Rethinking the

Inception Architecture for Computer Vision. (2015). https://doi.org/10.48550/ARXIV.1512.00567

[62] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017. Distributed deep neural networks over the cloud, the

edge and end devices. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS’17). 328–339. https://doi.org/10.1109/ICDCS.2017.226

[63] Juheon Yi, Chulhong Min, and Fahim Kawsar. 2021. Vision paper: Towards software-defined video analytics with cross-

camera collaboration. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys’21).

Association for Computing Machinery, New York, NY, 474–477. https://doi.org/10.1145/3485730.3493453

[64] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: Exploring the efficacy of pruning for model compres-

sion. https://arxiv.org/abs/1710.01878

Received 1 April 2022; revised 28 July 2023; accepted 29 July 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 98. Publication date: November 2023.

https://doi.org/10.3390/s16010115
http://arxiv.org/abs/2011.09926.
https://arxiv.org/abs/2011.09926
https://doi.org/10.1109/SCC53864.2021.00038
https://doi.org/10.1109/ISCA.2016.32
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1801.04381
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.48550/ARXIV.1512.00567
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1145/3485730.3493453
https://arxiv.org/abs/1710.01878

