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ABSTRACT

Sleep deficiency and disorders are one of the most unsolved public
health challenges of modern times. Music therapy is a promising ap-
proach, offering a cheap and non-invasive solution to improve sleep
quality. However, the choice of therapeutic sleep music is highly
limited for users because such music needs to be specially chosen
and made by sleep therapists. It could potentially lead to the in-
efficiency of music therapy if users get bored after listening to the
same set of music repeatedly. In this paper, we take the first step to-
wards generating personalized sleep therapy music. Firstly, through
an in-depth feature analysis, we investigate the importance of vari-
ous musical and acoustic features of therapy music. Grounded on
our findings, we design a style transfer framework called SleepGAN
which induces therapeutic features into music from different genres.
We show that, compared to baselines, the music generated by Sleep-
GAN has a higher similarity to the sleep music designed by experts.

Index Terms— Music style transfer, Sleep therapy

1. INTRODUCTION

Sleep is an essential function of the human body and has a direct
impact on our physical and mental well-being. Research has shown
that sleep disruption and disorders have a strong causal link to ma-
jor lifestyle diseases such as memory loss, obesity, diabetes, and
cancer [1, 2]. Unfortunately, sleep disorders are highly prevalent
in our society — studies show that nearly 40% of United King-
dom adults and roughly 50-70 million American adults experience
them [3, 4]. Cognitive Behavior Therapy and pharmaceutical sleep
aids are two common clinical interventions to alleviate sleep dis-
orders. However, they are expensive and have potentially harmful
side-effects [5], which has led to research in designing non-invasive,
low-cost interventions to address sleep disorders.

Music therapy is a promising approach in this direction, with
the goal being to expose users/patients to ‘therapeutic music’ prior
to sleep which can enhance their sleep quality. Clinical studies have
shown that sleep disorders can be mitigated using therapeutic music,
due to the potential effect of such music on modulating the sym-
pathetic nervous system activity [6], regulating the stress hormone
cortisol [7], and increasing the levels of oxytocin in the body [8].
Further, commercial products such as the Bose Sleep Buds [9] have
also been launched to support music therapy through earbuds.

However, music used for therapy is primarily designed or cho-
sen by expert sleep therapists. Thus, the available therapeutic mu-
sic is often highly limited in terms of scalability and accessibility.
Although clinical studies have shown that a user’s personal music
preference could have an impact on the effectiveness of music ther-
apy [10, 11], currently there are no effective ways to personalize
therapy music for individual users. As such, users are left with a
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small collection of pre-designed therapy music to choose from. This,
in turn, could limit mass adoption of sleep music apps, as well as
potentially lead to music fatigue [12] wherein users get bored after
listening to the same set of therapy music repeatedly.

The goal of this paper is to explore techniques for generating
personalized sleep music. This means, users can select music from
their own playlists and our algorithm can make the user-selected mu-
sic more therapeutic. We envision that such a technique will enable
sleep therapy apps to accept arbitrary music file, thereby allowing
users to have sleep therapy with a personalized list of songs.

The key research challenges are twofold: Firstly, there is insuffi-
cient understanding of the relationship between various musical fea-
tures and their therapeutic effect on sleep music. Although prior
research has investigated the characteristics of sleep music [3, 13],
the studies were done with selective user groups, or included music
playlists from a small group of users. Secondly, it remains an open
question how to induce therapeutic sleep features into any type of
user-selected music. While [14] has looked at generating music for
anxiety-reduction, no evidence has shown that music for addressing
such mental problems could equally work for sleep improvement.

In a first of its kind exploration, we analyze 399 examples of
sleep music taken from clinical studies and crowd-sourced Spotify
sleep playlists to understand their fundamental acoustic and musi-
cal properties, and how they differ from other genres of music. By
extracting a total of 34 features from each music and performing a
K-means clustering on them, we learn that sleep music is primar-
ily characterized by its bass, treble, and overall pitch profile. More
specifically, spectral rolloff features are one of the most prominent
discriminating features between sleep music and other types of mu-
sic. Based on this in-depth feature analysis, we design a CycleGAN-
based style transfer framework called SleepGAN with a customized
optimization objective that aims to ‘transfer’ therapeutic features
from sleep music into any user-specified music. Our evaluation illus-
trates that SleepGAN manages to generate music which — as com-
pared to the original user-specified music — is quantitatively more
similar to sleep therapy music.

In summary, our contributions include a feature analysis of sleep
music to decipher what makes it different from other types of mu-
sic. Thereafter, we show that the therapeutic features uncovered in
our analysis could be used to design more accurate style transfer
methods. As a clinical sleep study to evaluate the generated music’s
efficacy is out of the scope of this paper, we present an objective
evaluation to show that the music generated by SleepGAN is quan-
titatively similar to the sleep music designed by experts. We also
present a preliminary subjective study to evaluate if users prefer the
music generated by SleepGAN over other baseline methods.

2. MUSICAL FEATURE ANALYSIS

In this section, we conduct feature analysis to answer the question
“what are the most discriminating musical features for sleep mu-
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sic”. This exploration will indicate potential strategies for develop-
ing a style transfer model that can incorporate therapeutic properties
into arbitrary user-selected music. To advance an explanatory un-
derstanding of sleep music, we ground the analysis on fundamental
musical features (e.g., thythm, articulation).

In the following, we first describe the dataset used in our study,
then elaborate on the feature analysis using K-means clustering.

2.1. Dataset

For the study, we create a dataset that consists of two sets of music,
sleep music and other music.

Sleep music: We collected 399 pieces of sleep music (no lyrics)
from the following two resources. First, we collected 26 pieces that
have been proven therapeutic in clinical sleep studies [13, 15]. Sec-
ond, like [16], we crowd-sourced sleep music using the popular mu-
sic streaming service provider Spotify!. We searched for Spotify
playlists that were made specifically for sleep aid. Then, to alleviate
bias towards individual music preferences, we only included the top
3 voted playlists that each had more than 200K likes.

Other music: For a comparative study, we further collected
1K music and songs (with lyrics) of 10 genres from the GTZAN
dataset [17]; the genres include classical, jazz, blues, country, disco,
hiphop, metal, pop, reggae, and rock.

To be consistent with the GTZAN dataset in which each music
piece has a length of 30 s, we extract an arbitrary snippet of 30 s
from each of the 399 sleep music piece. All music data was prepro-
cessed into monophonic Waveform Audio File Format (WAV) with
a sampling rate of 16 K H z before feature extraction and analysis.

2.2. Musical Feature Extraction

For the analysis, we consider the following typical and informative
audio features:

1. Articulation feature describes the staccato and legato [18].
We extract this feature by calculating the average silence ratio
(ASR) that indicates the percentage of frames whose root mean
square (RMS) energy is lower than the average RMS energy of all
frames [18, 19].

2. Energy features describe the intensity of music signals. To
characterize the overall intensity and its variation throughout music,
we calculate the mean, variation, and standard deviation of RMS
energy (RMS mean, RMS var, RMS std) across all frames for each
music piece.

3. Spectrum: To characterize the natural human auditory per-
ception on a logarithmic frequency scale, we use the Mel-frequency
cepstral coefficients (MFCCs) that have been proven effective in
many music information retrieval tasks. For each 30 s music piece,
we extract the first 20 MFCCs and calculate the mean coefficient
value for each of them (MFCC I — MFCC 20).

4. Rhythm characterizes the temporal note placements of a mu-
sic signal. We calculate the estimated overall tempo (Tempo) of each
music piece. In addition, to characterize the rhythm strength and
its variation throughout music, we calculate the onset envelope and
extract its mean (OEnv mean), variation (OEnv var), and standard
deviation (OEnv std) as the other three rhythm features.

5. Bass and treble: We characterize these two features using
the spectral rolloff frequency that stands for the frequency bin such
that a certain amount of energy (85% in our study) in the current
frame is obtained no higher than this frequency bin [20]. We first
calculate the rolloff frequency for each frame of the given music and
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then calculate their mean (SRolloff mean), variation (SRolloff var),
and standard deviation (SRolloff std) as the music features.

6. Noise- or tone-like: Spectral flatness quantifies how much
a music piece is noise-like as opposed to tone-like [21]. We calcu-
late the mean (Flatness mean), variation (Flatness var), and standard
deviation (Flatness std) across all frames for each music piece.

We calculate the above features using Librosa® with a sampling
rate of 16 kH z, FFT window size of 2048, and hop length of 512.
The above 34 features were normalized before further analysis. Fi-
nally, each 30 s music piece is described with a 34-dimensional fea-
ture vector.

2.3. Musical Feature Analysis

To explore which features contribute most to distinguishing sleep
music from other music, we conduct an analysis using the K-means
clustering technique. We specify two clusters to form, aiming to
separate the 399 pieces of sleep music from the other 1000 GTZAN
music/songs.

To figure out the most discriminating musical features, we calcu-
late the metric adjusted Rand score (ARS) which is commonly used
to measure the correctness of clustering. ARS € [—1, 1] measures
the similarity between the ground-truth labels and the clusters as-
signed by the K-means model [22]. An ARS value of 1 means per-
fect matching and random assignments lead to a score close to 0.
Furthermore, for a more comprehensive understanding of the clus-
tering results, we also calculate Silhouette Coefficient (SC) that is
commonly used to measure the compactness of clusters. An SC
value of 1 means highly compact and well-separated clusters and
a value of 0 indicates overlapping clusters.

Table 1 summarizes the analysis results when using different
subsets of musical features. We concatenate the articulation and en-
ergy features since they are all based on RMS energies. As high-
lighted in Table 1, overall, spectral rolloff features perform the best
to distinguish sleep music from other music. More specifically, spec-
tral rolloff features show the highest ARS value (0.761) and the sec-
ond highest SC value (0.581).

Table 1: K-means clustering results measured by adjusted Rand
score (ARS) and Silhouette Coefficient (SC) when using different
subsets of musical features. Each musical feature has different dis-
criminating power, among which the spectral rolloff features per-
form the best to distinguish sleep music from other music.

ARS SC
All 34 musical features 0.115 0424
Only articulation and energy features  -0.063  0.497
Only MFCC features 0.096  0.449
Only rhythm features 0.112  0.456
Only spectral rolloff features 0.761  0.581
Only spectral flatness features 0.037  0.629

To further obtain an intuitive understanding of the musical fea-
tures in our dataset, we visualize the sleep music and the GTZAN
dataset in 2D spaces using the t-SNE algorithm. We experiment with
different perplexity factors for the t-SNE implementations, which
lead to similar results, and we show an example visualization with
perplexity set as 30 in Figure 1. It shows that with the exception
of articulation and energy based features in Figure 1(b), most other
features lead to good clustering performance for sleep music. In par-
ticular, Figure 1(e) supports our finding from Table 1 that the spectral
rolloff features provide the best cluster separability for sleep music.

’https://librosa.org
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Fig. 1: Visualization of sleep music and GTZAN music when using different subsets of musical features. Compared with other musical
features, the spectral rolloff features (e) group and separate the sleep music (dark blue points) more clearly from the other music.

Takeaways. Overall, the analysis in this section implies that each
musical feature has a different discriminating power to distinguish-
ing sleep music from the other music types. The results, especially
the performance of the spectral rolloff features, indicate that sleep
music is mostly characterized by its spectrum-relevant features that
are more closely related to the bass, treble, and the overall pitch pro-
file of a music piece.

3. SLEEPGAN: THERAPEUTIC STYLE TRANSFER

Inspired by the music style transfer technique and its application for
anxiety reduction [14], we present an exploration of developing a
therapeutic style transfer model called SleepGAN, which enhances
the therapeutic effects of a music piece after trained using sleep mu-
sic as the target style. We propose to design SleepGAN using the
CycleGAN [23] structure and based on the feature analysis results
in Section 2. In the following, we first present a baseline CycleGAN
model, on top of which we introduce our SleepGAN that involves
loss functions constructed using the 34 musical features.

3.1. Baseline: CycleGAN Model for Music Style Transfer

In our work, we regard the sleep music to be of the “therapeutic
genre” that is in parallel to other music genres such as classical,
pop, and electronic. Accordingly, we build our baseline style transfer
model following the structure in [24] that has shown adequate per-
formance in genre transfer. Let X denote the music dataset from the
“therapeutic genre”, and Y denote the music dataset from any other
genre such as classical or pop. The baseline CycleGAN style transfer
model consists of two generators G : X — Y and ' : Y — X with
a U-Net [25] architecture and two convolutional PatchGAN discrim-
inators Dx and Dy [26]. To train this model, the training objective

L(G,F,Dx,Dy) = Lgan(G,Dy) + Lgan(F,Dx)+

M
AcycleLcycle(Gy F) + )\idLid(G> F)
consists of two GAN adversarial losses Lgan (G, Dy) and
Lgan(F,Dx), a cycle consistency loss Lcycie(G, F'), and an
identity loss L;q4(G, F).

3.2. SleepGAN: Therapeutic Style Transfer

Section 2 reveals that different musical features contribute dif-
ferently to distinguishing sleep music from the other music. In-
spired by this finding, we propose to include a novel musical loss
Lusicai (G, F) in SleepGAN that characterizes each of the 34 mu-
sical features according to their contribution to therapeutic effects.
Formally:
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Lmusical (G7 F) = Lcosine(w : fmusical(G(m)), w - fmusical (y))+
Lcosine(w : fmusical (F(y))7 w - fmusical (l‘))
@)

in which, L¢osine refers to cosine similarity loss between
two feature vectors, fmusicar refers to the 34-dimensional musi-
cal feature vector extracted from the current music signal, w =
[w1, w2, ..., w33, w34 refers to the weight vector that weighs the 34
musical features. The weight of each feature is set to its Adjusted
Rand Score (ARS) value from the K-means analysis. Thereafter, the
weight vector is normalized using min-max normalization.

Including this weighted musical loss, the training objective for
SleepGAN is formulated as follows:

L(G,F,Dx,Dy) = Lagan(G,Dy) + Lgan(F,Dx)+

3
)\cycleLcycle(Gv F) + AidLid(G7 F) + Lmusical (G7 F) ( )

To apply a trained baseline or SleepGAN model for style transfer,
the input music is first converted into its Mel-spectrogram, then the
model generator generates a new Mel-spectrogram in the therapeutic
style. This output spectrogram is finally converted back to the time
domain using a gradient-based inversion algorithm [27] for play-
back.

4. EXPERIMENTS

To evaluate the performance of our SleepGAN model, we trained
a baseline and a SleepGAN model for each GTZAN genre using
the 399 sleep music as the target style and a random selection of
50 music pieces from that genre as the input style. The models were
trained using Adam optimizer, a learning rate of 2 x 10~*, and batch
size of 16. For the training objective, we chose parameters Acycie =
1 and A\;q = 6. We then tested the trained models using the rest 50
music pieces from the corresponding GTZAN genre.

4.1. Objective Performance Evaluation

One typical objective evaluation for a style transfer model is to com-
pare the style-transferred music with respect to the reference music
(i.e., sleep music in our study) by calculating their similarity using
extracted features [28, 29]. In our work, we adopt the music simi-
larity measure [30] used for music class recognition which fits the
context of our study. More specifically, we extract VGGish feature
vectors [31] from the sleep music and the model-generated music
and use their cosine similarity as a quantitative measure. Note that
we choose not to include the 34 musical features (presented in §2.2)
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Table 2: Style-specific models: Mean cosine similarities with stan-
dard deviations between the sleep music and the test music of each
GTZAN genre. The output music from our SleepGAN model be-
comes more similar to the sleep music compared to the output from

the baseline model and the original version of the music.

Original Baseline SleepGAN

Jazz 0.397 £0.069  0.476 £0.091  0.529 £ 0.088
Classical ~ 0.457 £0.083  0.558 £0.101  0.596 +0.114
Rock 0.357 £0.083  0.430+0.075  0.451 £ 0.094
Reggae 0.368 £ 0.065  0.437+0.089  0.465 £ 0.080
Pop 0.363 £0.064  0.4544+0.103  0.509 £ 0.067
Metal 0.323 £0.054  0.455+0.067  0.464 £ 0.054
Hiphop 0.352 £0.058  0.444 £0.112  0.434 £ 0.056
Disco 0.342 £0.061  0.447+0.065 0.483 £0.076
Country ~ 0.406 £0.065 0.4724+0.018  0.472 £ 0.037
Blues 0.391 +£0.054 0.485+0.068  0.551 £ 0.049
Average 0.3756 0.4658 0.4954

for the similarity calculation, in order to avoid potential bias since
these features are used for training the SleepGAN model.

Table 2 shows the cosine similarities between the sleep music
and the test music of each GTZAN genre. The experimental results
show that SleepGAN manages to change the style of the original mu-
sic so as to match the style of sleep music. More specifically, over-
all, SleepGAN increases the cosine similarity by approximately 32%
compared to the original music. We also observe that the transferred
music from SleepGAN shows higher similarities than that from the
baseline CycleGAN model with an increase of around 6% on aver-
age. In particular, SleepGAN successfully enhances the therapeutic
style of eight music genres by approximately 8% on average. This
indicates that our proposed loss function, Lyusicai (G, F’), well cap-
tures the therapeutic characteristics of sleep music, thereby enabling
a more effective therapeutic style transfer.

We further analyze the effect of the therapeutic style transfer for
different genres. Out of the 10 music genres, SleepGAN shows the
higher similarity than the baseline for all genres except for hiphop
and country. This is surprising, considering that music of eight gen-
res (other than jazz and classical music) is songs with lyrics. We
observe that our SleepGAN model manages to soften human voice
and strong beats in the original music. According to clinical stud-
ies [10, 32], such changes could help to induce more therapeutic
properties into a music piece.

4.2. Discussion

Apart from the above evaluations, we also conducted further objec-
tive and subjective assessments, as discussed below.

Universal therapeutic style transfer: So far, we have trained mod-
els for each specific input style. While this is a common approach
for style transfer, such a genre-specific method brings several lim-
itations such as limited generalizability to unseen input styles and
training cost. To explore the potential of universal style transfer, we
trained a baseline and a SleepGAN model using the training music
from all GTZAN genres as the input style, and tested the trained
models on the same test data as before. As shown in Table 3, com-
pared with the original music that on average has a similarity value of
0.3756, the transferred music from the universal baseline model has
an average similarity values of 0.4207, and from the universal Sleep-
GAN model 0.4288. While the improvement of universal models is
lower compared to that of style-specific models (see Table 2), the
universal SleepGAN model still shows reasonable enhancement re-
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Table 3: Style-independent universal models: Mean cosine similar-
ities with standard deviations between the sleep music and the test
music of each GTZAN genre.

Original Baseline SleepGAN

Jazz 0.397 £0.069  0.459 £0.068  0.470 & 0.105
Classical ~ 0.457 £0.083  0.477 £0.087 0.542+0.114
Rock 0.357 £0.083  0.402£0.069  0.411 £ 0.059
Reggae 0.368 £0.065 0.396 £0.077  0.415 £+ 0.081
Pop 0.363 £0.064  0.424 £0.080 0.413 £0.085
Metal 0.323 £0.054  0.389 £0.083  0.373 £ 0.089
Hiphop 0.352 £0.058 0.382£0.056  0.397 & 0.056
Disco 0.342 £0.061  0.375+£0.083  0.354 £ 0.082
Country 0.406 £0.065  0.456 £ 0.067  0.451 £ 0.079
Blues 0.391 £0.054  0.447 £0.078  0.462 + 0.081
Average 0.3756 0.4207 0.4288

gardless of the genre. We argue that the model generalizability could
be further advanced by integrating scalable architecture such as that
of StarGAN [33].

Subjective evaluation: To explore how users would perceive the
transferred music from the models, we conducted a small-scale pre-
liminary subjective experiment with 11 participants (9 males and 2
females). To help the participants understand what sleep music is,
we first asked them to listen to three pieces of sleep music from our
dataset. Then, we played 4 pieces of style-transferred music (2 ran-
domly chosen from jazz and 2 from pop) from SleepGAN and the
baseline, i.e., 8 music pieces in total, and asked the participants to
rate their subjective perception of the style similarity to sleep music
on a 5-point scale from 1 (not similar at all) to 5 (very similar).

We compare the scores of SleepGAN and the baseline and count
which model has the higher score for the same music piece. For
jazz music, SleepGAN was marked with a higher score for 40.9%
of the cases, whereas the baseline was so for 22.7% of the case; for
the rest of the cases, they were reported with the same score. It
indicates that the participants perceived the style of the SleepGAN
output more similar to the style of sleep music, compared to the out-
put of the baseline. However, for pop music, the participants marked
the higher score for the baseline (27.3%) more often than for Sleep-
GAN (18.2%). We conjecture that this might be due to the presence
of vocal elements in pop music — although our quantitative analysis
showed that SleepGAN increased feature similarity post-transfer for
pop music, our study participants might have focused on the vocal
elements of the music and would not have noticed the change in the
overall music structure. However, we are aware that the subjective
evaluation was in an early phase. To better understand users’ experi-
ence with the generated music, we will conduct more comprehensive
studies to evaluate its musicality and clinical effects.

5. CONCLUSIONS AND FUTURE WORK

With the vision of developing personalized sleep therapy music, this
paper first presented a feature analysis to uncover the impact of var-
ious musical features on the therapeutic properties of sleep music.
Building on this analysis, we presented the SleepGAN model and
demonstrated how to exploit the style transfer technique to automat-
ically incorporate therapeutic properties in a user’s preferred music,
supported by quantitative and qualitative evaluation results.

As a future work, we are designing a large-scale clinical study
to validate the efficacy of the transferred music in improving long-
term sleep quality. Moreover, we are interested in enhancing the
generalizability of the SleepGAN model so to be easily extended to
unseen music styles.
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