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a multidevice and multimodal 
dataset for human energy 
expenditure estimation using 
wearable devices
Shkurta Gashi  1 ✉, Chulhong Min  2, alessandro Montanari2, Silvia Santini1 & 
Fahim Kawsar2,3

We present a multi-device and multi-modal dataset, called WEEE, collected from 17 participants while 
they were performing different physical activities. WEEE contains: (1) sensor data collected using 
seven wearable devices placed on four body locations (head, ear, chest, and wrist); (2) respiratory data 
collected with an indirect calorimeter serving as ground-truth information; (3) demographics and body 
composition data (e.g., fat percentage); (4) intensity level and type of physical activities, along with 
their corresponding metabolic equivalent of task (MET) values; and (5) answers to questionnaires about 
participants’ physical activity level, diet, stress and sleep. Thanks to the diversity of sensors and body 
locations, we believe that the dataset will enable the development of novel human energy expenditure 
(EE) estimation techniques for a diverse set of application scenarios. EE refers to the amount of energy 
an individual uses to maintain body functions and as a result of physical activity. A reliable estimate of 
people’s EE thus enables computing systems to make inferences about users’ physical activity and help 
them promoting a healthier lifestyle.

Background & Summary
Human energy expenditure (EE) refers to the amount of energy an individual uses to maintain essential body 
functions (respiration, circulation, digestion) and as a result of physical activity1. Knowledge regarding the 
expended energy or calories could help people (e.g., athletes, obese, diabetic) to plan their physical activity for 
leading a healthier lifestyle2. Additionally, it could be used to enable nutrition coaching for weight management 
purposes3. Devising methods for EE estimation (EEE) is a key enabler of the mentioned intervention strategies 
and it is the core goal of the dataset presented in this paper.

The gold-standard EE measurement methods are direct calorimetry–which measures body heat while the 
subject is inside a chamber–, indirect calorimetry–that consists of a mouth piece worn for respiratory gases anal-
ysis–and doubly labeled water–which measures carbon dioxide production during the interval between first and 
last body water samples3–5. Such techniques require the use of cumbersome and expensive equipment and are 
not feasible to measure EE in free-living conditions for specific activities on a minute by minute basis. Measuring 
EE in real-world scenarios in a fine-grained manner would enable obtaining valuable information regarding 
people’s physical activity and providing personalized and timely recommendations.

Considering the cost and practical limitations of gold-standard methods combined with the proliferation of 
ubiquitous computing3, several researchers started exploring the use of mobile and wearable devices for EEE6–8. 
Such devices are suitable for continuous monitoring of EE because they are unobtrusive and do not hamper the 
natural behavior of the user in free-living conditions. Additionally, they have the potential to provide a cheap 
and reliable solution to this problem. Despite the considerable research progress in sensor-based EEE, several 
challenges remain open. In particular, it is not evident which type of sensor, body position or combination 
thereof would enable reliable EEE. Also, there is a lack of studies investigating the quality of data and how it 
influences the robustness of EEE. Such investigations are impeded by the lack of sensor-diverse, multimodal and 

1Università della Svizzera italiana (USi), faculty of informatics, Lugano, Switzerland. 2nokia Bell Labs, Pervasive 
Systems, cambridge, United Kingdom. 3University of Glasgow, School of computing Science, Glasgow, United 
Kingdom. ✉e-mail: shkurta.gashi@usi.ch

DATA DEscripTor

opEN

https://doi.org/10.1038/s41597-022-01643-5
http://orcid.org/0000-0001-6650-3784
http://orcid.org/0000-0002-5197-9840
mailto:shkurta.gashi@usi.ch
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01643-5&domain=pdf


2Scientific Data |           (2022) 9:537  | https://doi.org/10.1038/s41597-022-01643-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

publicly available datasets, which could potentially enable the development of more accurate EEE techniques4,7. 
While there exist commercial wearable devices that measure EE (mainly using demographics data and acceler-
ometer sensor), it is not clear how they compare to gold-standard measurements (e.g., indirect calorimetry) and 
new sensor-based techniques (e.g., physiological sensors).

To overcome such barriers and foster further developments in EEE, in this paper, we introduce a new, mul-
timodal dataset collected from 17 participants using 7 wearable devices, each containing multiple sensors. The 
goal of the dataset is to enable the design and development of new sensor-based EEE techniques during rest and 
physical activity. To this goal, we design and run a data collection protocol, which consists of three activities, 
such as resting, cycling and running, each performed for 10 minutes. We picked these activities because they 
involve movements of different intensity levels (e.g., light, moderate and vigorous). In addition, they require 
full-, half- or no-body movement, which are representative of physical activities performed in everyday life, as 
discussed in3. Each physical activity was performed at two intensity levels to cover a wider range of movement 
intensity and explore the EE changes during such intensities. For instance, participants ran at two different 
speeds for 5 minutes each.

The dataset is collected using an indirect calorimeter, a headband, earbuds, two chest-belts (a commercial 
and a gold-standard device), and three wristbands (a research-grade and two commercial devices). At least one 
or more devices include the following sensor data: oxygen consumption (VO2), fraction of oxygen in expired 
breath (FeO2), air moved by the lungs (Ve), volume breathed in a breath (Tv), breaths per minute (BR), humid-
ity (H), temperature (T), pressure (P), acceleration (ACC), gyroscope (GYRO), photoplethysmography (PPG), 
electrocardiography (ECG), electrodermal activity (EDA), skin temperature (TEMP) and electroencephalog-
raphy (EEG) and information derived from sensors such as e.g., heart rate (HR), heart rate variability (HRV), 
breathing rate (BR), body posture and more.

Table 1 presents an overview of existing datasets in the literature that enable EE modeling using sensor data. 
Only two of the existing datasets are publicly available for download, e.g.3,9, marked with “Yes” in the “Publicly 
Available” column of the table. In comparison to these datasets, our dataset contains a higher number of unique 
data sources (in total 18). Further, it is the only dataset that contains ACC and HR from multiple body locations, 
such as the ear, wrist, and chest, which allows researchers to investigate the development of novel techniques 
for EE estimation. Only Bouarfa et al.10 investigated the use of ACC placed on the ear to estimate EE. However, 
estimating EE from ACC and HR data collected from the ear has not yet been explored. Additionally, WEEE 
contains data from both medical grade devices (e.g., Zephyr Bioharness) and commercial devices (e.g., Fitbit 
sense and Apple Watch), which enables the comparison of HR measurements between such devices.

Methods
To enable multimodal EE modeling, we design a controlled experiment and ask participants to perform a set of 
pre-defined activities. We opt for a controlled study because, despite its constraints, it enables running detailed anal-
ysis of the phenomenon under investigation and it is suitable for the replicability of the data collection procedure. 
In this section, we provide details about the participants, data collection setup and protocol, and the collected data.

participants. We recruited 17 participants (12 males and 5 females) using snowball sampling11. Participants 
were of age between 23 and 41 years old (MEAN = 30, STD = 5) and with an average BMI of 24.5 (STD = 2.9). The 
study was conducted following the ethical regulations at our institution. All the participants signed an informed 
consent form and agreed their data to be used for research purposes. Participants were instructed to wear com-
fortable attire for the experiment. Also, we asked participants to be in a rested and fasting state by refraining from 
endurance training for 24 hours prior the study and avoiding caffeine, tobacco, alcohol, and food intake 3 hours 
before the experiment. Participants were compensated with a £20.- gift card.

setup. As a preparation for each experiment, we charged the devices and visually verified that the clock of 
each device matched the same time reference to ensure synchronization among the devices. This included check-
ing for the date, time (in terms of hours, minutes and seconds) and time zone. Before the experiment, participants 
completed a set of questionnaires regarding their eating habits, sleep, stress and physical activity level. Before 
starting the experiment, we asked the participants to step up on the QardioBase smart scale (https://www.qardio.
com/qardiobase-smart-scale-iphone-android/) to measure body composition metrics (e.g., weight, muscle per-
centage). We then placed the devices as follows on the participant: VO2 Master Analyzer (https://vo2master.com/) 
on the face, Nokia Bell Labs earbuds12,13 on the right ear, Muse S headband (https://choosemuse.com/muse-s/) 
on the head, Empatica E4 wristband14 on the non-dominant hand, Zephyr BioHarness chestbelt (https://www.
zephyranywhere.com/) and Wahoo Tickr chest strap (https://eu.wahoofitness.com/devices/heart-rate-monitors) 
on the chest, Fitbit Sense watch (https://www.fitbit.com/global/us/products/smartwatches/sense) and Apple 
watch (https://www.apple.com/apple-watch-series-6/index.html) on the dominant hand. Figure 1 presents an 
overview of the study setup, devices used and their location. We ensured proper attachment of the face mask and 
calibration of the flow sensor, as recommended in3. Muse S headband, Zephyr Bioharness and Wahoo chestbelts 
were moisturized with water before attaching them to participant’s body. The earbuds are a multi-sensory eara-
ble device under development by the Nokia Bell Labs, which has been already tested in12,13,15. The VO2 Master 
Analyzer device has a smaller size than the major portable metabolic analyzer brands, which makes it a suitable 
option for VO2 measurements. Montoye et al.16 have shown acceptable validity and reliability of this device in 
comparison to gold-standard measurements. Furthermore, the VO2 Master Analyzer is compatible with other 
devices, such as, e.g., the Wahoo Tickr– validated in17–, which makes it easier for the researchers to obtain addi-
tional data (e.g., heart rate) together with VO2 measurements. The Zephyr BioHarness chest belt contains an ECG 
sensor, which provides heart rate measurements. Nazari et al.18 have shown evidence of the reliability and validity 
of heart rate measurements across multiple contexts using this device. The Zephyr BioHarness has been used 
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also in other studies3,19–21. The Empatica E4 device is a watch-like, multi-sensor device. It is light, easy to use and 
comfortable to wear, which makes it suitable to monitor people’s energy expenditure. Additionally, the Empatica 
E4 provides the raw sensor data as well as encrypts the data during transfer and does not store user’s personal 
data, which is convenient to preserve the privacy of the study participants. The Empatica E4 has been extensively 
used in the literature for energy expenditure estimation21, but also other tasks15,22,23. We chose the Fitbit and 
Apple watch devices because they are among the most popular smartwatches available in the market, as shown 
in a recent article by The Economist magazine in24. Also, they have shown high accuracy for measuring heart rate 

Dataset Paper
Number of 
Subjects Devices(s) Sensor(s) Body Location(s)

Number of 
Activities Publicly Available

46 15 Polar S720i HR Wrist Chest 5 No

DEE9 28 Polar Active, DLW HR, ACC Wrist (In-the-wild) Yes
10 31 eAR, Cosmed K4b2 ACC VO2 Ear 10 No
8 24 Polar Active, DLW ACC VO2 Wrist 2 (In-the-wild) No

47 22 MetaMax 3B-R2, Polar H7 VO2, VCO2 ECG, HR, BR Chest Upper 
body** 1* No***

19 10 Cosmed K4b, Zephyr 
BioHarness, BodyMedia Fit

VO2 ECG, RESP, HR, BR, HRV ST, 
ACC, EDA, RR Chest Thigh Arm 15 No

48 15 Cosmed K4b2, ECG 
Necklace VO2 ACC, ECG, HR Ankle Chest Thigh 

Wrist Waist 32 No

2 12 Cosmed  K4b2, Smartphone VO2 ACC Waist 6 No

49 10 Cosmed K4b2, ECG 
Necklace VO2 ACC, ECG, HR Chest 41 No

4TU50 37 GeneActives Equivital, 
COSMED Activ8

ACC ACC, ECG,TEMP, HR, BR 
VO2, VCO2 ACC Ankle Wrist Chest 16 No***

6 22 Oxycon Mobile Actigraph 
GT1M VO2 ACC Hip 22 No

JSI3 10
Shimmer, Zephyr 
BioHarness, BodyMedia 
FIT, Cosmed K4b2

ACC ECG, RESP, HR, BR, HRV ST, 
ACC, EDA, RR VO2

Arm Wrist Chest 
Thigh Ankle 15 Yes

WEEE 17

VO2 Analyzer, Nokia 
Earbuds, Empatica E4, 
Zephyr Bioharness, Wahoo 
Tickr, Apple Watch, Fitbit 
Sense, Muse S

VO2, FeO2, Ve, Tv, H, T, P ACC, 
GYRO, PPG EDA, TEMP, PPG, 
TEMP ECG, RESP, HR, BR, HRV 
HR, BR HR HR EEG, ACC, GYRO

Ear Chest Wrist 
Head 6 Yes

Table 1. Comparison of the existing datasets for energy expenditure modeling and our dataset. The table shows 
the dataset name and paper where it was presented, the number of subjects in the existing datasets, devices used, 
types of sensors and body locations at which sensors are placed during the data collection as well as number of 
physical activities. We linked the publicly avaialble dataset name to the repository where it can be downloaded. 
In this literature review we favored work that collected data from more than one data source or body location. 
For a more detailed overview of other existing datasets please refer to Alvarez et al.3. *Cycling performed at 
different intensities. **In the form of a shirt. ***Available by sending a request to the corresponding author. 
HR - Heart rate, ACC–acceleration, VO2–oxygen consumption, VCO2–carbon dioxide exhaled, ECG–
electrocardiography, BR–breathing rate, EDA–electrodermal activity, TEMP–skin temperature, HRV–heart 
rate variability, RR–Interbeat interval, FeO2–fraction of oxygen in expired breath, Ve–air moved by the lungs, 
Tv–volume breathed in a breath, BR–breaths per minute, H–humidity, T–temperature, P–pressure, GYRO–
gyroscope, PPG–photoplethysmography, EEG–electroencephalography.

Fig. 1 Study setup–Data collection setup (left) and a participant wearing the indirect calorimetry (right). We 
obtained consent from the participant to include in the manuscript the image on the right.
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during physical activities considered in our work (e.g., cycling, running)25. We chose the Muse S device because 
it is a portable and unobtrusive brain-sensing headband and has been previously validated in the literature15,26,27.

procedure. Figure 2 depicts an overview of the study protocol. Participants followed a predefined set of activ-
ities, similar to28,29, grouped into three parts: resting, cycling and running. During resting, participants were asked 
to sit on a chair and stand on their feet, for 5 minutes each, to obtain physiological data during a resting state. 
After that, they cycled in an indoor bike and run on a treadmill, for 10 minutes in each activity. Both cycling and 
running activity were performed in two intensity levels, each of 5 minutes. We used a window of 5 minutes for 
each activity to reach a steady state EE, as recommended in3. The intensities of these activities were selected by 
the participants to represent their individual habits, as suggested in previous work30,31. The total duration of the 
experiment was 30 minutes. For consistency, the bicycle resistance and treadmill inclination were kept the same 
for all participants.

We picked resting, cycling and running activities because these activities involve movements of different 
intensity levels (e.g., light, moderate and vigorous). For instance, sitting or standing requires no or light move-
ment, cycling requires half-body or moderate movement and running full body or vigorous movement. We run 
the protocol from low to high intensity to avoid the impact of high activities into low intensity ones.

collected data. We collect five types of data: sensor data, respiratory gases, demographics and body composi-
tion, activity data and questionnaires data explained as follows.

Sensor and respiratory gases. Table 2 shows an overview of the characteristics of devices used to collect WEEE 
dataset. The table presents the device used, device location, the type of data that was collected for each device as 
well as paper(s) that validated the sensor readings of the device. The table shows that WEEE contains data from 
8 different devices (including an indirect calorimeter serving as ground-truth information) placed on 5 unique 
body locations. Some of the sensors (e.g., ACC, PPG) are available in more than one body location (e.g., ear, 
wrist, chest).

Demographics and body composition. To collect body composition and demographics data, we use QardioBase 
smart scale. In particular, we collect participants’ gender, age, height, weight, percentage of body fat, muscle, 
bone, water and body mass index (BMI). Muscle mass percentage is calculated as the percentage of muscle in the 
body as compared to total body weight. Table 3 shows the mean (standard deviation) of the demographics and 
body composition data for all participants as well as for participants with female or male body types. The range 
of BMI is 20 to 30 kg/m2 (MEAN = 24.5, STD = 2.9).

Activity data. We derive labels regarding the activity performed from the protocol. Also, we kept notes of the 
intensity level (speed) of each activity. To enable further comparisons, we include the metabolic equivalent of a 
task (MET) values for each activity type based on intensity as defined in the compendium of physical activities32.

Questionnaires. We assess participant’s physiological and physical state before the experiment using validated 
questionnaires. In particular, we evaluate their sleep quality level over the past month using the Pittsburgh Sleep 
Quality Index (PSQI)33 and sleepiness level before the experiment using the Stanford Sleepiness Scale (SSS)34. 
Participants also report their stress level using the Perceived Stress Scale (PSS)35, physical activity level using 
the International Fitness Scale (IFIS)36, the readiness for physical activity using the Physical Activity Readiness 
(PAR-Q)37, and How healthy is your diet? to measure the nutritional value of their diet, which have an impact on EE.

Fig. 2 Data collection protocol. Speed 1 and Speed 2 during cycling and running refer to low and high speed 
levels. Such levels were chosen by the individual based on their fitness level. The average speed during the 
low and high levels of cycling was 15.64 (STD = 3.33) and 24.17 (STD = 4.94), and for running was 5.93 
(STD = 1.48) and 8.58 (STD = 2.55).

https://doi.org/10.1038/s41597-022-01643-5


5Scientific Data |           (2022) 9:537  | https://doi.org/10.1038/s41597-022-01643-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data records
The raw data can be found at Zenodo38 and the dataset is available for download at this link: https://doi.
org/10.5281/zenodo.6420886. Data of each participant has been anonymized with an alphanumeric format of 
P#, to which we refer to as participant identifier, and is placed on separate folders named with participant iden-
tifier (e.g., P1). The dataset contains a folder for each participant and some other files described as follows: 
Demographics.csv contains demographics (e.g., gender, age) and body composition data (e.g., BMI, percentage of 
fat, muscle, water, bone) for each participant in an anonymous format, Study_Information.csv contains the start 
and end time of each study condition (e.g., start time of the sitting or cycling activity), speed of cycling/running 
and MET information for each activity, Questionnaires folder contains the answers to the pre-study question-
naires regarding participants’ physiological state. Within each participant folder, there are five other folders, 
namely, VO2, EARBUDS, E4, ZEPHYR, and MUSE, which contain the raw data obtained from each device 
during data collection. Table 4 provides an overview and description of the main files inside a participant folder.

Missing data. The MUSE S device data of participant P02 is missing due to a malfunction in the streaming 
of the sensor data to the third-party app MindMonitor (https://mind-monitor.com/), which we used to collect 
the data. Part of the VO2 data of P03 and P12 during the cycling condition and of P16 during the running con-
dition was lost due to issues with the indirect calorimeter VO2 sensor.

technical Validation
We evaluate the technical validity of the dataset, i.e., whether the sensor measure what they are expected, in 
three ways: (1) by providing descriptive statistics of the data in comparison to the device manuals, (2) by investi-
gating the relationship between physiological signals collected from different body locations and (3) comparing 
the changes in sensor data for different physical activities, as suggested in39.

Table 5 presents descriptive statistics of the collected data for each device together with reference values 
obtained from the devices’ manuals. These statistics support the validity of the dataset because the minimum 
and maximum values obtained from the sensors are within the expected range for the majority of the sen-
sors. For instance, the minimum (47) and maximum (209) HR values measured with ZEPHYR are inside the 
expected range of [25:240]. Similarly, the minimum (0.87) and maximum (1.91) values of ACC sensor measured 

Device Position Sensor(s) Sampling Unit References

VO2 Master 
Analyzer face mask Mouth

Oxygen consumption (VO2), Fraction of oxygen in 
expired breath (FeO2), Air moved by the lungs (Ve), 
Volume breathed in a breath (Tv), Breaths per minute (Rf), 
Humidity (H), Temperature (T), Pressure (P)

1 Hz mL/kg/min, mL/min % L/min, L, 
BPM, %RH, C, hPa

16

Nokia Bell Labs 
earbuds Ear Accelerometer, Gyroscope, Photoplethysmography (Green, 

infrared, and red channels) 100 Hz milli-g [−2000, +2000], milli-dps 
[−500000, +500000]

12,13,15

Muse S headband Head
Accelerometer, Gyroscope, Electroencephalography (EEG) 
raw, EEG absolute band power (alpha, beta, delta, gamma, 
theta)

52 Hz, 52 Hz, 256 Hz, 10 Hz g [−2:+2], deg/s [−245:+245], uV 
[0.0:1682.815], Bels

15,26,27

Zephyr BioHarness 
chest-belt Chest

Accelerometer, Breathing sensor raw output, Breathing rate, 
Breath-to-breath interval, ECG raw waveform, Heart rate, 
Heart rate variability, RR interval, Posture

100 Hz, 25 Hz, 1 Hz, -, 
250 Hz, 1 Hz, 1 Hz, -, 1 Hz

bits {0–4094}, bits {1:16777215}, 
bpm [4:70], ms, bits {0:4095}, bpm 
[25:240], ms {0:65534}, ms {0:32767}, 
Degrees from vertical {−180:180}

3,18–21

Wahoo Tickr chest 
strap Chest Heart Rate, Respiration Rate 1 Hz bpm 17

Empatica E4 
wristband Wrist Accelerometer, Blood Volume Pulse, Electrodermal activity, 

Skin temperature 32 Hz, 64 Hz, 4 Hz, 4 Hz g {−2:+2}, -, microsiemens, C 14,15,21,22,51

Fitbit Sense Watch Wrist Heart Rate Every 5–15 s bpm 25

Apple Watch Series 6 Wrist Heart Rate 1 Hz bpm 25

Table 2. Overview of the devices used to collect our dataset, the body location of the device, types of sensors, 
measurement unit and sampling frequency as well as existing papers that validated the device.

All Male Female

Participants 17 12 5

Age 30.2 (5.5) 30.7 (5.9) 28.8 (4.4)

Height (cm) 172.2 (6.9) 175.2 (5.4) 165.0 (4.5)

Weight (kg) 72.9 (11.6) 77.6 (9.8) 61.5 (6.9)

BMI (kg/m2) 24.5 (2.9) 25.4 (2.7) 22.4 (2.2)

Muscle (%) 14.8 (1.1) 14.7 (1.2) 14.8 (0.8)

Fat (%) 22.2 (5.8) 20.0 (4.9) 27.4 (4.4)

Bone (%) 4.2 (0.4) 4.2 (0.4) 4.2 (0.4)

Water (%) 52.2 (4.0) 52.5 (4.3) 51.6 (3.5)

Table 3. Mean (standard deviation) of the demographics and body composition data of the participants in our 
dataset.
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Device File Column(s) Description

VO2 DataAverage.csv

Time[s] Seconds (s) passed since the start of the session.

Time[hh:mm:ss] Time in hours:minutes:seconds format.

VO2[mL/kg/min] Oxygen consumption in mili-liter per kilogram per minute.

VO2[mL/min] Oxygen consumption in mili-liter per minute.

HR[bpm] Heart rate measured using the Wahoo Tickr chest strap.

Rf[bpm] Breaths per minute measured using the Wahoo Ticker chest strap.

Tv[L] Volume breathed in a breath.

Ve[L/min] Air moved by the lungs.

Ve/VO2 PPG sensor green wavelength.

FeO2[%] Fraction of oxygen in expired breath.

Pressure[hPa] Pressure

Temp[C] Temperature

HUM[%RH] Humidity

RR[ms] The time elapsed between two successive R-waves of the QRS signal

Time The date and time the sample was captured.

E4

Column 1 X-axis of accelerometer sensor.

ACC.csv Column 2 Y-axis of accelerometer sensor.

Column 3 Z-axis of accelerometer sensor.

BVP.csv Column 1 Data from photoplethysmograph (PPG) sensor.

EDA.csv Column 1 Electrodermal activity expressed in microsiemens (S).

HR.csv Column 1 Average heart rate extracted from the BVP signal.

IBI.csv Column 1 The time of the detected inter-beat interval expressed in seconds (s).

TEMP.csv Column 2 The distance of the current beat from the previous beat in seconds (s).

info.txt Column 1
Skin temperature expressed in degrees on the Celsius (°C) scale.

Further information regarding each csv file in E4 folder.

EARBUDS

Timestamp Timestamp in UNIX format with millisecond resolution.

*-imu-*.csv ax/gx X-axis of accelerometer/gyroscope sensor.

ay/gy Y-axis of accelerometer/gyroscope sensor.

az/gz Z-axis of accelerometer/gyroscope sensor.

*-ppg-*.csv timestamp Timestamp in UNIX format.

green PPG sensor green wavelength.

ir PPG sensor infrared wavelength.

red PPG sensor red wavelength.

MUSE

Column 1 Timestamp in UNIX format.

acc.csv Column 2 X-axis of accelerometer/gyroscope sensor.

gyro.csv Column 3 Y-axis of accelerometer/gyroscope sensor.

Column 4 Z-axis of accelerometer/gyroscope sensor.

eeg.csv Column 1 Timestamp in UNIX format.

Column 2–6 EEG channels.

ZEPHYR *_Summary.csv

Time[s] The date and time the sample was captured.

HR Heart rate measured from the ECG sensor.

BR Breathing rate measured from a pressure sensor in the strap.

SkinTemp Skin temperature.

Posture Posture: 0° = subject vertical, 90° = subject prone, −90° = subject supine, 
±180° = subject inverted.

Activity Vector magnitude of the three axial acceleration magnitudes over the 
previous 1 second, sampled at 100 Hz.

PeakAccel Peak acceleration magnitude from the previous second.

BatteryVolts Device battery: fully charged ~4.2 V and fully discharged ~3.6 V.

BRAmplitude Breathing rate amplitude used for internal development only.

HRV Heart rate variability.

ECGAmplitude Uncalibrated ECG amplitude measured from peak of the R wave to peak of 
the S wave of the QRS complex.

Table 4. Description of the content of the folders named P# in the WEEE dataset. In this table we explain only 
the most relevant files in the dataset. The files inside the VO2 folder contain also the data collected from the 
Wahoo Tickr chest strap.

https://doi.org/10.1038/s41597-022-01643-5
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with the E4 devices are within the ±2 range. These observations confirm that the data in WEEE dataset are as 
expected according to the devices’ manuals. We observe that the minimum HR derived from the E4 and earbuds 
fall below the expected minimum, this could be due to the presence of motion artifacts in PPG signal from 
which HR is derived. We recommend careful identification and removal of artifacts in the PPG signal before 
further analysis.

To further evaluate the validity of our dataset, we explore the association between physiological signals col-
lected from different body locations. Given that HR and ACC data are available from multiple body positions, 
we investigate the relationship between such data collected from different body positions. To perform this anal-
ysis, we compute Pearson product-moment correlation when data samples conform to a Gaussian distribution 
and Spearman rank correlation otherwise, as a common procedure in the literature40. We use Shapiro-Wilk test 
to verify whether the data conforms a Gaussian distribution. We test the p-values against both p < 0.05 threshold 
as well as the corrected threshold ( = = .p 0 01c

p
n , where n refers to body locations or devices and is equal to 5), 

to account for the Bonferroni correction41. Figure 3 presents the heatmap with correlations coefficients between 
sensor data collected from different devices. As expected, we observe that the motion data (e.g., ACC, GYRO) 
collected from the ear, chest or wrist is significantly positively correlated to each other (p < 0.01).

We further explore the difference in sensor data for each physical activity. Figure 4 shows the distribution of 
EE measured using the indirect calorimetry (left), HR (middle) and GYRO (right) data measured using earbuds. 
As expected the average amount of EE during activities with high intensity movements is higher than for those 
with low intensity movements. For instance, the average EE during running or cycling are higher than during 
resting activities (e.g., sitting and standing). We observe similar patterns for HR and GYRO sensor data. This 
exploration of the data further confirms the validity and reliability of the collected data.

Usage Notes
The WEEE dataset38 is available for download at this link: https://doi.org/10.5281/zenodo.6420886. The data-
set website is https://wearableenergyexpenditure.github.io/. To analyze the dataset, we recommend using 
existing libraries for preprocessing and cleaning the physiological signals. In particular, the possible libraries 
that could be used are: HeartPy (https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/) to 
extract heart rate data from PPG or ECG sensors, NeuroKit (https://neurokit2.readthedocs.io/en/latest/
index.html) and BrainFlow (https://github.com/brainflow-dev/brainflow) to analyze EEG, PPG, ECG, and 
other kinds of data from physiological sensors available in the WEEE dataset, cvxEDA (https://github.com/
lciti/cvxEDA) for decomposing the EDA signal into the phasic and tonic components, EDArtifact (https://
github.com/shkurtagashi/EDArtifact) for exploring, preprocessing and identifying artifacts in EDA data and 
EDAExplorer (https://github.com/MITMediaLabAffectiveComputing/eda-explorer) to extract peaks from 
EDA signals and extract features from the ACC sensor.

The WEEE dataset fosters research and development of new solutions to problems as follows:

•	 Device/Sensor Fusion: The dataset contains raw measurements from sensors in multiple devices placed on the 
head, ear, wrist and chest. Thanks to its large number of wearable devices and sensor types, the dataset enables 
exploration of which sensor (device) or combination thereof enables a more accurate measurement of EE. For 

MEAN STD MIN 25% 50% 75% MAX Ref.

EE[Kcal/min] 3.59 2.82 0.44 1.16 2.72 5.26 17.59 —

WAHOO_HR[bpm] 102.92 28.32 36.00 83.00 99.00 123.00 195.00 [25, 240]

WAHOO_Rf[bpm] 22.09 8.21 0.00 16.29 20.91 27.34 54.00 [4, 70]

ZEPHYR_HR 98.01 25.99 47.00 81.00 94.00 114.00 209.00 [25, 240]

ZEPHYR_BR 19.59 5.94 7.00 15.00 19.00 24.00 37.00 [4, 70]

ZEPHYR_Posture 4.82 33.42 −169.00 −9.00 −3.00 24.00 171.00 [−180, +180]

ZEPHYR_Activity 0.21 0.29 0.00 0.01 0.07 0.28 1.29 [0, 16]

ZEPHYR_PeakAccel 0.46 0.69 0.01 0.04 0.15 0.55 5.48 [0, 16]

E4_ACC 1.02 0.10 0.87 0.98 0.99 1.01 1.91 [−2g, +2 g]

E4_EDA 2.65 5.12 0.04 0.33 0.48 2.42 44.54 [0.01 - 100]

E4_TEMP 33.47 1.09 30.71 32.87 33.31 34.07 36.77 [−40, +115]

E4_HR 70.82 26.20 2.60 52.76 73.14 88.49 186.92 [25, 240]

EARBUDS_HR 66.73 43.30 0.06 33.80 71.84 93.18 182.36 [25, 240]

EARBUDS_ACC 1000.20 34.72 855.78 987.59 991.90 1000.95 1262.22 [−2k, +2k]

EARBUDS_GYRO 17996.31 18599.98 200.32 1388.59 12156.08 28716.58 218536.08 [−50k, +50k]

MUSE_ACC 0.02 0.00 0.00 0.02 0.02 0.02 0.03 [−2, +2]

MUSE_GYRO 18.99 15.44 4.56 8.35 12.40 25.48 249.91 [−245, +245]

Table 5. Descriptive statistics of the WEEE dataset. The table includes mean (MEAN), minimum (MIN), 
standard deviation (STD), maximum (MAX) and their corresponding reference values (Ref.) The variations in 
the minimum and maximum values of the same sensor (e.g., ACC) from different devices are mainly attributed 
to body position heterogeneity.
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instance, the dataset enables exploring different sensor (device) fusion strategies such as e.g., stacking sensor 
channels one after the other, multi-input architecture, ensemble methods, and feature concatenation.

•	 Sensor Location: Researchers may further explore how the sensor position impacts the EEE. To the best of our 
knowledge, our dataset enables for the first time using heart rate and motion data collected from the ear for 
EEE and comparing it to the same data sources collected from other body positions.

Fig. 3 Correlation analysis–Correlation between physiological signals collected from different body positions.

Fig. 4 Data visualizations–Distribution of EE (left) measured using the indirect calorimetry, HR (middle) and 
GYRO (right) measured using the earbuds, during physical activities considered in this work.

Fig. 5 PSQI questionnaire33–Answers to the question “During last week, how would you rate your sleep quality 
overall?”.

https://doi.org/10.1038/s41597-022-01643-5
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•	 Individual Characteristics: The literature has shown that age, gender, body size and composition have an 
impact in EE. For instance, individuals with a larger body require a higher amount of energy than those with 
smaller body size because of the amount of tissues4. Our dataset enables a systematic, data-driven exploration 
of the impact of such individual characteristics in EEE.

•	 Context Information: Several researchers have shown that combining human activity recognition and EEE 
generally leads to better EEE6. Our dataset contains information about the type of activity that participants 
performed and its intensity level, which allows researchers investigating methods to simultaneously recognize 
the activity type, intensity level and EEE as well as understand their impact in EEE.

•	 Physiological Conditions: Investigating the impact of physiological conditions, e.g., physical activity level, diet, 
stress, and sleep in the overall EEE.

•	 Data Quality: Exploration of the impact of data quality (e.g., presence of noise and missing data) in the over-
all EEE. For instance, researchers could develop new methods to leverage the data from available sensors to 
handle noisy data, missing data points, missing sensor or device problems.

Fig. 6 PSQI questionnaire–Answers to the question “During last week, how much of a problem has it been for 
you to keep up enough enthusiasm to get things done?”.

Fig. 7 SSS questionnaire34–Answers to the question “Please report your degree of sleepiness at the moment”.

Fig. 8 IFIS questionnaire36–Answers to the question “Please try to think about your level of physical fitness 
(compared to your friends) and choose the right option”.

https://doi.org/10.1038/s41597-022-01643-5
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•	 State-of-the-art Comparison: The dataset also contains HR measurements from ECG sensor measured with 
Zephyr Bioharness and PPG sensor measured with research-grade devices (e.g., Empatica E4) and commer-
cial devices (e.g., Fitbit and Apple Watch). This enables benchmarking existing HR-based EE measurement 
methods with new ones. Further, our dataset contains EE measurements from indirect calorimetry, which is 
one of the gold-standard measurement techniques for EE as well as METs derived from the compendium of 
physical activities based on activity type and intensity level. This enables the comparison of sensor-based EEE 
with gold-standard techniques.

While the WEEE data set opens up novel opportunities for computing systems that monitor energy expend-
iture, our approach presents some limitations and opportunities for further improvements. The first limitation 
stems from the low number of physical activities investigated. We opted for this decision to avoid having a long 
experiment protocol and to avoid causing fatigue to our study participants. Future work should consider extend-
ing our approach by adding more various physical activities. Even if our data set contains 3 activities, each of 
these activities has been performed in two intensity levels, which make the data set diverse in terms of types of 
activities and intensity levels.

indirect calorimetry data. The data collected from the indirect calorimetry can be used as a ground truth 
in future analysis. To prepare indirect calorimetry data for the analysis, the VO2 data should first be cleaned, for 
instance, by removing the values when VO2 sensor did not record any data (e.g., VO2 = 0). Then VO2 data should 
be converted to EE using equations from the literature e.g., in4.

Fig. 9 PSS questionnaire35–Answers to the question “In the last week, how often have you…”.

Fig. 10 How healthy is your diet?36–Answers to the item “Eating habits”.

Fig. 11 How healthy is your diet?36–Answers to the item “Fruit and vegetables”.
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Earbuds data. To use the data collected from earbuds, one should first convert the raw ACC data to milli-g 
by multiplying it with 0.061 and the raw GYRO data to milli-dps (degrees per second) by multiplying with 17.5. 
This is to convert the raw data coming from the sensor from integer format to a more usable format (i.e., milli-g 
and milli-dps). Then remove the direct current (DC) offset from the GYRO data by applying a Butterworth 
band-pass filter. To clean the PPG signal, one could apply a Butterworth band-pass filter and then extract HR 
using the NeuroKit library mentioned before.

Wristband data. To clean ACC and TEMP data, we suggest to apply a central moving average filter with a 
window of 1 minute, similar to23. Then to compute the ACC magnitude. The EDA data should be cleaned using a 
first order Butterworth low-pass filter with a cut-off frequency of 0.6 Hz, similar to42.  The EDA data can further 
be dicomposed into the tonic–the slowly changing component–and phasic–characterized by skin conductance 
responses (SCRs) or peaks that occur as a result of a stimuli–components, using the cvxEDA method proposed by 
Greco et al.43. To clean the PPG data, a first order Butterworth FIR filter with a cut-off frequency of 5 Hz  should 
be applied, as suggested in44. The HR data can then be derived from PPG using the NeuroKit library45.

Fig. 12 How healthy is your diet?36–Answers to the item “Fat”.

Fig. 13 How healthy is your diet?36–Answers to the item “Starchy foods”.

Fig. 14 How healthy is your diet?36–Answers to the item “Sugar”.
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Questionnaire data. Figures 5 to 15 present a summary of the answers received from all the participants 
for the PSQI, SSS, IFIS, PSS and “How healthy is your diet?” questionnaires. Such data can be used as additional 
information regarding the physical and physiological state of participants before the experiment.

other data. The data from Wahoo Ticker and Zephyr BioHarness are preprocessed and provided at a 1 Hz 
granularity. For these reason, data from such devices can be used as is.

Code availability
We provide the raw csv data files obtained during the data collection structured by user and device identifier. We 
did not implement any custom code to generate or process the data.
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